Publications by authors named "Vincent Lagneau"

Compound-specific isotope analysis (CSIA) has been increasingly used to understand and quantify the (bio)degradation processes affecting chlorohydrocarbons in aquifer-aquitard systems. In this study, we aimed at investigating through reactive transport simulations if dual element (C, Cl) CSIA in aquifer samples can provide information about the occurring (bio)degradation pathways in the underlying aquitard. To that end, we modeled the continous dissolution of a 1,1,2,2-tetrachloroethane (TeCA) dense nonaqueous phase liquid (DNAPL) source in an aquifer as well as the resulting TeCA groundwater plume formation and diffusion into the underlying aquitard.

View Article and Find Full Text PDF

Knowledge on the bioavailability of trace elements is essential in developing environmental quality standards. The purpose of this study was to explore the relationships between trace elements (in particular Uranium (U)) in sediments, porewater and their bioaccumulation by Chironomus riparius on a uranium mining site and river sediments upstream of the mine. The mobility and speciation of U in sediments was investigated using DGT.

View Article and Find Full Text PDF

Sequential extraction schemes (SES) were evaluated to investigate the fractionation of Al, As, Cd, Cs, Cr, Co, Cu, Fe, Mn, Mo, Pb, Sr, U and Zn between the different mineral phases in iron oxide rich deposits of a former uranium mining site. Ineffective dissolution of iron oxide was observed when applying the BCR sequential extraction scheme. The hydroxylamine hydrochloride reagent in nitric acid could not effectively dissolve the iron oxide phase, even after several consecutive extractions.

View Article and Find Full Text PDF

Reactive transport is a highly non-linear problem requiring the most efficient algorithms to rapidly reach an accurate solution. The non-linearities are increased and the resolution is even more demanding and CPU-intensive when considering feedback of dissolution or precipitation reactions on hydrodynamic flow and transport, commonly referred to as the variable porosity case. This is particularly true near clogging, which leads to very stiff systems and therefore small time-steps.

View Article and Find Full Text PDF

Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example.

View Article and Find Full Text PDF