Publications by authors named "Vincent L Vilker"

Tacrolimus (FK506) is a potent, narrow therapeutic index, immunosuppressive drug used to avoid organ rejection in patients that have undergone organ transplantation. Recent clinical reports suggested a significant reduction in the tacrolimus concentration/dose ratio in the plasma of liver and kidney recipients when the reference listed drug was substituted with a generic drug. In response to these concerns about switching between tacrolimus from different approved manufacturers during treatment, the FDA initiated purity, potency and quality studies of the innovator and generic tacrolimus products available in the US marketplace.

View Article and Find Full Text PDF

Putidaredoxin reductase (PdR) is the flavin protein that carries out the first electron transfer involved in the cytochrome P450cam catalytic cycle. In PdR, the flavin adenine dinucleotide (FAD/FADH2) redox center acts as a transformer by accepting two electrons from soluble nicotinamide adenine dinucleotide (NAD+/NADH) and donating them in two separate, one-electron-transfer steps to the iron-sulfur protein putidaredoxin (Pdx). PdR, like the two more intensively studied monoflavin reductases, adrenodoxin reductase (AdR) and ferredoxin-NADP+ reductase (FNR), has no other active redox moieties (e.

View Article and Find Full Text PDF

Cytochromes P450 are known to exhibit diverse catalytic functions against a large number of hydrocarbon substrates. The determinants of specific activity(ies) that operate on specific substrates have not been widely explored. Earlier, we showed that dehalogenation of 1,2-dibromo-3-chloropropane (DBCP) by P450cam (CYP101) monooxygenase exhibits oxygen- and substrate-dependent product distributions and reaction rates (1).

View Article and Find Full Text PDF

Thermostable anthranilate synthase from the marine sulfate-reducing hyperthermophile Archaeoglobus fulgidus has been expressed in Escherichia coli, purified, and characterized. The functional enzyme is an alpha2beta2 heterotetrameric complex of molecular mass 150+/-15 kDa. It is composed of two TrpE (50 kDa) and two TrpG (18 kDa) subunits.

View Article and Find Full Text PDF

Putidaredoxin (Pdx) is an 11,400-Da iron-sulfur protein that sequentially transfers two electrons to the cytochrome P450cam during the enzymatic cycle of the stereospecific camphor hydroxylation. We report two transitions in the Pdx UV-VIS absorption and circular dichroism (CD) temperature dependencies, occurring at 16.3+/-0.

View Article and Find Full Text PDF

The structure of the C73G mutant of putidaredoxin (Pdx), the Fe(2)S(2) ferredoxin that supplies electrons to cytochrome CYP101 (p450cam) for camphor oxidation, is reported at 1.9 A resolution in a C2 crystal form. The structure was solved by single-wavelength iron anomalous diffraction, which yielded electron density above the 2sigma level for over 97% of the non-H atoms in the protein.

View Article and Find Full Text PDF

Resonance Raman spectroscopy at 2.5cm(-1) resolution was used to probe differences in wild-type and Y96F mutant P450cam (CYP101), both with and without bound camphor or styrene substrates. In the substrate-free state, the spin state equilibrium is shifted from 6-coordinate low spin (6CLS) toward more 5-coordinate high spin (5CHS) when tyrosine-96 in the substrate pocket is replaced by phenylalanine.

View Article and Find Full Text PDF

Spectroelectrochemistry measurements are used to demonstrate that active site mutation and binding of an non-natural substrate to P450cam (CYP101) reduces the shift in the redox potential caused by substrate-binding, and thereby results in slower catalytic turnover rate relative to wild-type enzyme with the natural camphor substrate.

View Article and Find Full Text PDF