Bacteria have adapted to phage predation by evolving a vast assortment of defence systems. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library with the lytic coliphage T4 to isolate clones carrying protective genes.
View Article and Find Full Text PDFThe capture of metagenomic DNA in large clone libraries provides the opportunity to study microbial diversity that is inaccessible using culture-dependent methods. In this study, we harnessed nuclease-deficient Cas9 to establish a CRISPR counter-selection interruption circuit (CCIC) that can be used to retrieve target clones from complex libraries. Combining modern sequencing methods with CCIC cloning allows for rapid physical access to the genetic diversity present in natural ecosystems.
View Article and Find Full Text PDFRNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification.
View Article and Find Full Text PDFIn response to emergent antibiotic resistance, new strategies are needed to enhance the effectiveness of existing antibiotics. Here, we describe a phagemid-delivered, RNA-mediated system capable of directly knocking down antibiotic resistance phenotypes. Small regulatory RNAs (sRNAs) were designed to specifically inhibit translation of chloramphenicol acetyltransferase and kanamycin phosphotransferase.
View Article and Find Full Text PDFThe emergence of extremely drug resistant Mycobacterium tuberculosis necessitates new strategies to combat the pathogen. Engineered bacteria may serve as vectors to deliver proteins to human cells, including mycobacteria-infected macrophages. In this work, we target Mycobacterium smegmatis, a nonpathogenic tuberculosis model, with E.
View Article and Find Full Text PDF