Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations.
View Article and Find Full Text PDFMagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity.
View Article and Find Full Text PDFOptically-pumped magnetometers constitute a valuable tool for imaging biological magnetic signals without cryogenic cooling. Nowadays, numerous developments are being pursued using alkali-based magnetometers, which have demonstrated excellent sensitivities in the spin-exchange relaxation free (SERF) regime that requires heating to >100 °C. In contrast, metastable helium-4 based magnetometers work at any temperature, which allows a direct contact with the scalp, yielding larger signals and a better patient comfort.
View Article and Find Full Text PDFSeven cases of urogenital schistosomiasis occurred in Corsica in 2015 and 2016. The episodes were related to exposure to the same river and involved the same parasite strain as an outbreak with 106 cases in summer 2013. The connection calls for further investigations on the presence of an animal reservoir and the survival of infested snails during winter.
View Article and Find Full Text PDF