Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix protein that plays a key role in ischemia-reperfusion injury, can be a pharmacological target for improving outcomes after cardiac arrest (CA), especially when therapeutic hypothermia is used. Using CypD knockout mice (CypD), we investigated the effects of loss of CypD on short-term and medium-term outcomes after CA. CypD mice or their wild-type (WT) littermates underwent either 5 minute CA followed by resuscitation with and/or without hypothermia at 33°C-34°C (targeted temperature reached within minutes after resuscitation), or a sham procedure.
View Article and Find Full Text PDFTherapeutic hypothermia is neuroprotective after cardiac arrest (CA) via poorly understood mechanisms. It may prevent mitochondrial permeability transition pore (PTP) opening, an event which plays a pivotal role in ischemia-reperfusion injury. PTP is the main end-effector of the reperfusion injury salvage kinase (RISK) signaling pathway.
View Article and Find Full Text PDFThe opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling.
View Article and Find Full Text PDFAim: To investigate whether slight variations in core temperature prior to cardiac arrest (CA) influence short-term outcomes and mitochondrial functions.
Methods And Materials: Three groups of New Zealand White rabbits (n = 12/group) were submitted to 15 minutes of CA at 38°C (T-38 group), 39°C (T-39), or 40°C (T 40) and 120 minutes of reperfusion. A Sham-operated group (n = 6) underwent only surgery.
Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in myocardial ischemia-reperfusion (I/R) injury. Resuscitated cardiac arrest (CA) leads to the post-CA syndrome that encompasses, not only myocardial dysfunction, but also brain injury, failure of other organs (kidney, liver, or lung), and systemic response to I/R. We aimed to determine whether cyclosporine A (CsA) might prevent multiple organ failure following CA through a ubiquitous mPTP inhibition in each distant vital organ.
View Article and Find Full Text PDF