Therapeutic targeting of membrane-associated viral proteins is complicated by the challenge of investigating their enzymatic activities in the native membrane-bound state. To permit functional characterization of these proteins, we hypothesized that the supported lipid bilayer (SLB) can support in situ reconstitution of membrane-associated viral protein complexes. As proof-of-principle, we selected the hepatitis C virus (HCV) NS5B polymerase which is essential for HCV genome replication, and determined that the SLB platform enables functional reconstitution of membrane protein activity.
View Article and Find Full Text PDFConformational modeling has been successfully applied to the design of cyclic bioisosteres used to replace a conformationally rigid amide bond in a series of thiophene carboxylate inhibitors of HCV NS5B polymerase. Select compounds were equipotent with the original amide series. Single-point mutant binding studies, in combination with inhibition structure-activity relationships, suggest this new series interacts at the Thumb-II domain of NS5B.
View Article and Find Full Text PDFA series of benzo[d]isothiazole-1,1-dioxides were designed and evaluated as inhibitors of HCV polymerase NS5B. Structure-based design led to the incorporation of a high affinity methyl sulfonamide group. Structure-activity relationship (SAR) studies of this series revealed analogues with submicromolar potencies in the HCV replicon assay and moderate pharmacokinetic properties.
View Article and Find Full Text PDFBenzothiazine-substituted tetramic acids were discovered as highly potent non-nucleoside inhibitors of HCV NS5B polymerase. X-ray crystallography studies confirmed the binding mode of these inhibitors with HCV NS5B polymerase. Rational optimization of time dependent inactivation of CYP 3A4 and clearance was accomplished by incorporation of electron-withdrawing groups to the benzothiazine core.
View Article and Find Full Text PDFThe importance of internal hydrogen bonding in a series of benzothiadiazine and 1,4-benzothiazine NS5b inhibitors has been explored. Computational analysis has been used to compare the protonated vs. anionic forms of each series and we demonstrate that activity against HCV NS5b polymerase is best explained using the anionic forms.
View Article and Find Full Text PDFThe discovery of 4'-azidocytidine (3) (R1479) (J. Biol. Chem.
View Article and Find Full Text PDFIsoquinoline-based non-nucleoside inhibitors of HCV NS5b RNA-dependent RNA-polymerase are described. The synthesis and structure-activity relationships are detailed, along with enzyme and cellular activity.
View Article and Find Full Text PDFThe NS5B encoded by the hepatitis C virus genome is a RNA-dependent RNA polymerase essential to viral replication. The entire NS5B protein contains a catalytic domain followed by a regulatory motif and a membrane-anchor domain at its C-terminus. Reported here is the molecular cloning and expression of the full-length NS5B polymerase (NS5B-FL) in bacterial cells as a non-fusion protein.
View Article and Find Full Text PDFThe NS5B RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) is a key component of the viral replicase. Reported here is the three-dimensional structure of HCV NS5B polymerase, with the highlight on its C-terminal folding, determined by X-ray crystallography at 2.1-A resolution.
View Article and Find Full Text PDF