Environ Sci Technol
September 2023
In marine environments, microscopic droplets of oil can be transported over large distances in the water column. Bacterial growth on the droplets' surface can deform the oil-water interface to generate complex shapes and significantly enlarge droplets. Understanding the fate of spilled oil droplets requires bridging these length scales and determining how microscale processes affect the large-scale transport of oil.
View Article and Find Full Text PDFBacteria on surfaces exhibit collective behaviors, such as active turbulence and active stresses, which result from their motility, growth, and interactions with their local surroundings. However, interfacial deformations on soft surfaces and liquid interfaces caused by active growth, particularly over long time scales, are not well understood. Here, we describe experimental observations on the emergence of tubular structures arising from the growth of rod-shaped bacteria at the interface of oil droplets in water.
View Article and Find Full Text PDFFertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility.
View Article and Find Full Text PDFBacteria biodegradation of immiscible oil requires cell-droplet encounters, surface attachment, and hydrocarbon metabolism. Chemical dispersants are applied to oil spills to reduce the mean dispersed droplet size, thereby increasing the available surface area for attachment, in attempts to facilitate bacterial biodegradation. However, their effectiveness remains contentious as studies have shown that dispersants can inhibit, enhance, or have no effect on biodegradation.
View Article and Find Full Text PDF