J Trauma Acute Care Surg
August 2021
Background: Virtual representations of human internal anatomy are important for military applications such as protective equipment design, injury severity prediction, thermal analysis, and physiological simulations. High-fidelity volumetric models based on imaging data are typically in static postures and difficult to use in simulations of realistic mission scenarios. This study aimed to investigate a hybrid approach to reposition medical avatars that preserves internal anatomy but allows rapid repositioning of full three-dimensional (3D) meshes.
View Article and Find Full Text PDFBlast-induced traumatic brain injury (bTBI) has become a signature casualty of recent military operations. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics may help in better understanding of injury mechanisms and in the development of improved neuroprotective strategies.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
October 2015
Background: To our knowledge, quantification of intranasal deposition of aerosol generated by Accuspray(™) (AS) in children has never been published. We hypothesized that deposition would vary significantly with age and with placement of the device within, or outside, of the nostril.
Methods: We tested these hypotheses in anatomically-correct physical models based on CT scans of 2-, 5-, and 12-year-old children with normal, intranasal airways.