Copy-number variants (CNVs) play a substantial role in the molecular pathogenesis of hereditary disease and cancer, as well as in normal human interindividual variation. However, they are still rather difficult to identify in mainstream sequencing projects, especially involving exome sequencing, because they often occur in DNA regions that are not targeted for analysis. To overcome this problem, we developed OFF-PEAK, a user-friendly CNV detection tool that builds on a denoising approach and the use of "off-target" DNA reads, which are usually discarded by sequencing pipelines.
View Article and Find Full Text PDFThe single-cell RNA-sequencing (scRNA-seq) field has evolved tremendously since the first paper was published back in 2009 (Tang et al. Nat Methods 6:377-382, 2009). While the first methods analyzed just a handful of cells, the throughput and performance rapidly increased over a very short time span.
View Article and Find Full Text PDFWe present FLASH-seq (FS), a full-length single-cell RNA sequencing (scRNA-seq) method with increased sensitivity and reduced hands-on time compared to Smart-seq3. The entire FS protocol can be performed in ~4.5 hours, is simple to automate and can be easily miniaturized to decrease resource consumption.
View Article and Find Full Text PDFHuman T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces chronic, persistent infection in infected individuals, with some developing adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells. In this study, we used single-cell RNA-sequencing and T cell receptor-sequencing to investigate the differentiation and HTLV-1-mediated transformation of T cells.
View Article and Find Full Text PDFThe integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved.
View Article and Find Full Text PDFThe combined application of linear amplification-mediated PCR (LAM-PCR) protocols with next-generation sequencing (NGS) has had a large impact on our understanding of retroviral pathogenesis. Previously, considerable effort has been expended to optimize NGS methods to explore the genome-wide distribution of proviral integration sites and the clonal architecture of clinically important retroviruses like human T-cell leukemia virus type-1 (HTLV-1). Once sequencing data are generated, the application of rigorous bioinformatics analysis is central to the biological interpretation of the data.
View Article and Find Full Text PDFAdult T-cell leukemia/lymphoma (ATL) carries a poor prognosis even in indolent subtypes. We performed targeted deep sequencing combined with mapping of HTLV-1 proviral integration sites of 61 ATL patients of African and Caribbean origin. This revealed mutations mainly affecting TCR/NF-kB (74%), T-cell trafficking (46%), immune escape (29%), and cell cycle (26%) related pathways, consistent with the genomic landscape previously reported in a large Japanese cohort.
View Article and Find Full Text PDFHuman T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process.
View Article and Find Full Text PDFHuman T-cell leukaemia virus type-1 (HTLV-1) and bovine leukaemia virus (BLV) infect T- and B-lymphocytes, respectively, provoking a polyclonal expansion that will evolve into an aggressive monoclonal leukaemia in ∼5% of individuals following a protracted latency period. It is generally assumed that early oncogenic changes are largely dependent on virus-encoded products, especially TAX and HBZ, while progression to acute leukaemia/lymphoma involves somatic mutations, yet that both are independent of proviral integration site that has been found to be very variable between tumours. Here, we show that HTLV-1/BLV proviruses are integrated near cancer drivers which they affect either by provirus-dependent transcription termination or as a result of viral antisense RNA-dependent cis-perturbation.
View Article and Find Full Text PDFBackground: Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1.
View Article and Find Full Text PDF