Chemical synthesis in combination with precision polymer modification allows the systematic exploration of the effect of protein properties, such as charge and hydrodynamic radius, on potency using defined, homogeneous conjugates. A series of polymer-modified synthetic erythropoiesis proteins were constructed that had a polypeptide chain similar to the amino acid sequence of human erythropoietin but differed significantly in the number and type of attached polymers. The analogs differed in charge from +5 to -26 at neutral pH and varied in molecular weight from 30 to 54 kDa.
View Article and Find Full Text PDFA synthetic strategy that allows for the site-specific attachment of polymers such as poly(ethylene glycol) (PEG) to protein pharmaceuticals is described. PEG was attached to a 67-amino acid fully synthetic CCL-5 (RANTES) analogue at its GAG binding site both to reduce aggregation and to increase the circulating lifetime. Effective protection of an Aoaa chemoselective linker during peptide assembly, total chemical protein synthesis, and protein folding was achieved with an isopropylidene group.
View Article and Find Full Text PDFWe report the design and total chemical synthesis of "synthetic erythropoiesis protein" (SEP), a 51-kilodalton protein-polymer construct consisting of a 166-amino-acid polypeptide chain and two covalently attached, branched, and monodisperse polymer moieties that are negatively charged. The ability to control the chemistry allowed us to synthesize a macromolecule of precisely defined covalent structure. SEP was homogeneous as shown by high-resolution analytical techniques, with a mass of 50,825 +/-10 daltons by electrospray mass spectrometry, and with a pI of 5.
View Article and Find Full Text PDF