This paper presents an electron multiplication charge coupled device (EMCCD) based on capacitive deep trench isolation (CDTI) and developed using complementary metal oxide semiconductor (CMOS) technology. The CDTI transfer register offers a charge transfer inefficiency lower than 10-4 and a low dark current o 0.11nA/cm2 at room temperature.
View Article and Find Full Text PDFFor the last two decades, the CNES optoelectronics detection department and partners have evaluated space environment effects on a large panel of CMOS image sensors (CIS) from a wide range of commercial foundries and device providers. Many environmental tests have been realized in order to provide insights into detection chain degradation in modern CIS for space applications. CIS technology has drastically improved in the last decade, reaching very high performances in terms of quantum efficiency (QE) and spectral selectivity.
View Article and Find Full Text PDFComplementary metal-oxide semiconductor (CMOS) image sensor sensitivity in the near-infrared spectrum is limited by the absorption length in silicon. To deal with that limitation, we evaluate the implementation of a polysilicon nano-grating inside a pixel, at the transistor gate level of a 90 nm standard CMOS process, through opto-electrical simulations. The studied pixel structure involves a polysilicon nano-grating, designed with the fabrication layer of the transistor gate, which does not require any modifications in the process flow.
View Article and Find Full Text PDFFinding transition states and diffusion pathways is essential to understand the evolution of materials and chemical reactions. Such characterization is hampered by the heavy computation costs associated with exploring energy landscapes at accuracy. Here, we revisit the activation-relaxation technique (ARTn) to considerably reduce its costs when used with the density functional theory and propose three adapted versions of the algorithm to efficiently (i) explore the energy landscape of complex materials with the knowledge of a single minimum (ARTn); (ii) identify a transition state when two minima or a guess transition state is given (refining ART or r-ART); and (iii) reconstruct complex pathways between two given states (directed ART or d-ART).
View Article and Find Full Text PDFThe leakage current non-uniformity, as well as the leakage current random and discrete fluctuations sources, are investigated in pinned photodiode CMOS image sensor floating diffusions. Different bias configurations are studied to evaluate the electric field impacts on the FD leakage current. This study points out that high magnitude electric field regions could explain the high floating diffusion leakage current non-uniformity and its fluctuation with time called random telegraph signal.
View Article and Find Full Text PDFPlasma processes are known to be prone to inducing damage by charging effects. For CMOS image sensors, this can lead to dark current degradation both in value and uniformity. An in-depth analysis, motivated by the different degrading behavior of two different plasma processes, has been performed in order to determine the degradation mechanisms associated with one plasma process.
View Article and Find Full Text PDFIn this paper we present a systematic approach to sort out different types of random telegraph noises (RTN) in CMOS image sensors (CIS) by examining their dependencies on the transfer gate off-voltage, the reset gate off-voltage, the photodiode integration time, and the sense node charge retention time. Besides the well-known source follower RTN, we have identified the RTN caused by varying photodiode dark current, transfer-gate and reset-gate induced sense node leakage. These four types of RTN and the dark signal shot noises dominate the noise distribution tails of CIS and non-CIS chips under test, either with or without X-ray irradiation.
View Article and Find Full Text PDFThe dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers.
View Article and Find Full Text PDFWe present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency.
View Article and Find Full Text PDF