The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility.
View Article and Find Full Text PDFPreeclampsia remains a clinical challenge due to its poorly understood pathogenesis. A prevailing notion is that increased placental production of soluble fms-like tyrosine kinase-1 (sFlt-1) causes the maternal syndrome by inhibiting proangiogenic placental growth factor (PlGF) and VEGF. However, the significance of PlGF suppression in preeclampsia is uncertain.
View Article and Find Full Text PDFBackground And Objectives: The studies were designed to test the efficacy of two peroxisome proliferator-activated receptor γ (PPARγ) agonists in two rodent models of polycystic kidney disease (PKD).
Materials And Methods: The PCK rat is a slowly progressing cystic model while the rat is a rapidly progressing model. PCK rats were fed with a pharmacological (0.
Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2014
Dichloroacetate (DCA) is a toxicant by-product from the chlorination disinfection process for municipal water. The levels would not affect people with normal renal and liver function. However, people with impaired renal or liver function may have an increased susceptibility to DCA toxicity as those are the organs affected by DCA.
View Article and Find Full Text PDFPatients with CKD have an increased risk of cardiovascular mortality from arrhythmias and sudden cardiac death. We used a rat model of CKD (Cy/+) to study potential mechanisms of increased ventricular arrhythmias. Rats with CKD showed normal ejection fraction but hypertrophic myocardium.
View Article and Find Full Text PDFThe morphology of the nephrons of the coelacanth Latimeria chalumnae was investigated by electron microscopy. Each nephron is composed of a large renal corpuscle with well vascularized glomerulus, ciliated neck segment, proximal tubule divided into first and second proximal segments, ciliated intermediate segment, distal tubule, collecting tubule, and duct. The podocytes of visceral epithelium contain large bi-lobed nuclei and their surface membranes pinch off vesicles into the cytoplasm.
View Article and Find Full Text PDFBackground/aims: Patients with chronic kidney disease (CKD) have a high prevalence of periodontal disease that may predispose to tooth loss and inflammation. The goal of this study was to test the hypotheses that a genetic rat model of progressive CKD would exhibit altered oral bone properties and that treatment with either bisphosphonates or calcium could attenuate these adverse changes.
Methods: At 25 weeks of age, rats were treated with zoledronate (ZOL), calcium gluconate, or their combination for 5 or 10 weeks.
Patients with chronic kidney disease (CKD) have increased risk of fractures, yet the optimal treatment is unknown. In secondary analyses of large randomized trials, bisphosphonates have been shown to improve bone mineral density and reduce fractures. However, bisphosphonates are currently not recommended in patients with advanced kidney disease due to concern about oversuppressing bone remodeling, which may increase the risk of developing arterial calcification.
View Article and Find Full Text PDFPatients with CKD have abnormal vascular remodeling that is a risk factor for cardiovascular disease. MicroRNAs (miRNAs) control mRNA expression intracellularly and are secreted into the circulation; three miRNAs (miR-125b, miR-145 and miR-155) are known to alter vascular smooth muscle cell (VSMC) proliferation and differentiation. We measured these vascular miRNAs in blood from 90 patients with CKD and found decreased circulating levels with progressive loss of eGFR by multivariate analyses.
View Article and Find Full Text PDFCiliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy.
View Article and Find Full Text PDFMutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv-/- mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells.
View Article and Find Full Text PDFGene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys.
View Article and Find Full Text PDFBackground: Transglutaminase 2 (TGM2) is a calcium-dependent enzyme that can cross-link nearly all extracellular matrix (ECM) proteins and can facilitate cell-ECM interaction through integrins. Given the importance of the ECM in vascular calcification we tested the hypothesis that increased TGM2 activity may accelerate vascular calcification in chronic kidney disease (CKD).
Methods: We utilized thoracic aortas and vascular smooth muscle cells (VSMC) from the Cy/+ rat, a model of progressive CKD that develops arterial calcification on a normal phosphorus diet, compared to normal rats.
Autosomal dominant polycystic kidney disease (ADPKD) is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney.
View Article and Find Full Text PDFHypoxia is associated with tissue injury and fibrosis but its functional role in fibroblast activation and tissue repair/regeneration is unknown. Using kidney injury as a model system, we demonstrate that injured epithelial cells produce an increased number of exosomes with defined genetic information to activate fibroblasts. Exosomes released by injured epithelial cells promote proliferation, α-smooth muscle actin expression, F-actin expression, and type I collagen production in fibroblasts.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is characterized by the slow growth of multiple fluid-filled cysts predominately in the kidney tubules and liver bile ducts. Elucidation of mechanisms that control cyst growth will provide the basis for rational therapeutic intervention. We used electrophysiological methods to identify lysophosphatidic acid (LPA) as a component of cyst fluid and serum that stimulates secretory Cl- transport in the epithelial cell type that lines renal cysts.
View Article and Find Full Text PDFMale gender is a risk factor for progression of polycystic kidney disease (PKD). 17β-Estradiol (E2) protects experimentally, but clinical use is limited by adverse effects. Novel E2 metabolites provide many benefits of E2 without stimulating the estrogen receptor, and thus may be safer.
View Article and Find Full Text PDFChronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic disorder that describes the complex bone and mineral abnormalities that occur in CKD. To understand the pathophysiology of CKD-MBD and determine whether the early use of phosphate binders would alter this physiology, we used a naturally occurring, slowly progressive model of CKD-MBD, the Cy/+ rat. Male Cy/+ rats were compared with their normal littermates at 20 weeks of age after 1 week of no phosphate binder, calcium carbonate, or sevelamer carbonate.
View Article and Find Full Text PDFBackground: The objective of the current study was to determine if altered regulation of matrix metalloproteinases (MMPs) may predispose to extracellular matrix degradation, facilitating arterial calcification in chronic kidney disease (CKD) using a progressive model of CKD-MBD, the Cy/+ rat.
Methods: Sera were collected from normal or CKD rats at various times and MMP-2 and MMP-9 levels determined by ELISA or zymography. Aorta tissue was harvested at sacrifice for RT-PCR and immunostaining.
Primary cilia regulate epithelial differentiation and organ function. Failure of mutant polycystins to localize to cilia abolishes flow-stimulated calcium signaling and causes autosomal dominant polycystic kidney disease. We identify a conserved amino acid sequence, KVHPSST, in the C-terminus of polycystin-1 (PC1) that serves as a ciliary-targeting signal.
View Article and Find Full Text PDFThe development and progression of renal cysts appears to be driven by reduced cellular calcium and increased cyclic adenosine monophosphate (cAMP) from G-protein-coupled receptors. To test whether treatment with a calcimimetic that stimulates the G-protein-coupled calcium-sensing receptor might normalize cystic epithelial cell intracellular calcium and cAMP, thereby inhibiting cyst progression, we used pcy mice. These animals develop cysts principally in the collecting duct, as do humans with nephronophthisis (NPHP).
View Article and Find Full Text PDFIt was reported that some proteins known to cause renal cystic disease (NPHP6; BBS1, and BBS4) also localize to the olfactory epithelium (OE), and that mutations in these proteins can cause anosmia in addition to renal cystic disease. We demonstrate here that a number of other proteins associated with renal cystic diseases - polycystin 1 and 2 (PC1, PC2), and Meckel-Gruber syndrome 1 and 3 (MKS1, MKS3) - localize to the murine OE. PC1, PC2, MKS1 and MKS3 are all detected in the OE by RT-PCR.
View Article and Find Full Text PDFApproximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations.
View Article and Find Full Text PDF