Phenomic prediction (PP), a novel approach utilizing Near Infrared Spectroscopy (NIRS) data, offers an alternative to genomic prediction (GP) for breeding applications. In PP, a hyperspectral relationship matrix replaces the genomic relationship matrix, potentially capturing both additive and non-additive genetic effects. While PP boasts advantages in cost and throughput compared to GP, the factors influencing its accuracy remain unclear and need to be defined.
View Article and Find Full Text PDFIdentifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse parents to 3 elite parents from West and Central Africa-back-cross nested association mapping.
View Article and Find Full Text PDFBackground: Multi-parent populations (MPPs) are important resources for studying plant genetic architecture and detecting quantitative trait loci (QTLs). In MPPs, the QTL effects can show various levels of allelic diversity, which can be an important factor influencing the detection of QTLs. In MPPs, the allelic effects can be more or less specific.
View Article and Find Full Text PDFThe rapid development of phenotyping technologies over the last years gave the opportunity to study plant development over time. The treatment of the massive amount of data collected by high-throughput phenotyping (HTP) platforms is however an important challenge for the plant science community. An important issue is to accurately estimate, over time, the genotypic component of plant phenotype.
View Article and Find Full Text PDFMulti-parent populations multi-environment QTL experiments data should be analysed jointly to estimate the QTL effect variation within the population and between environments. Commonly, QTL detection in multi-parent populations (MPPs) data measured in multiple environments (ME) is done by analyzing genotypic values 'averaged' across environments. This method ignores the environment-specific QTL (QTLxE) effects.
View Article and Find Full Text PDFIn the QTL analysis of multi-parent populations, the inclusion of QTLs with various types of effects can lead to a better description of the phenotypic variation and increased power. For the type of QTL effect in QTL models for multi-parent populations (MPPs), various options exist to define them with respect to their origin. They can be modelled as referring to close parental lines or to further away ancestral founder lines.
View Article and Find Full Text PDF