Publications by authors named "Vincent G Martinson"

The evolution of diverse and novel morphological traits is poorly understood, especially how symbiotic interactions can drive these adaptations. The extreme diversity of external traits in insect-induced galls is currently explained by the Enemy Hypothesis, in which these traits have selective advantage in deterring parasitism. While previous tests of this hypothesis used only taxonomic identity, we argue that ecologically functional traits of enemies (i.

View Article and Find Full Text PDF

Integrative taxonomic practices that combine multiple lines of evidence for species delimitation greatly improve our understanding of intra- and inter-species variation and biodiversity. However, extended phenotypes remain underutilized despite their potential as a species-specific set of extracorporeal morphological and life history traits. Primarily relying on variations in wing patterns has caused taxonomic confusion in the genus , which are gall-inducing flies on Asteraceae plants in western North America.

View Article and Find Full Text PDF

The host-specific microbiotas of animals can both reduce and increase disease risks from pathogens. In contrast, how environmental microbial communities affect pathogens is largely unexplored. Aquatic habitats are of interest because water enables environmental microbes to readily interact with animal pathogens.

View Article and Find Full Text PDF
Article Synopsis
  • Mosquitoes start as larvae that eat decaying stuff and then grow up to become adults that suck blood, which can spread diseases to humans.
  • Adult mosquitoes need sugar and blood for energy but lack some important nutrients, like B vitamins.
  • In a study on Aedes aegypti mosquitoes, researchers found that without gut bacteria, adults didn’t lay as many eggs and didn't function well, but giving them B vitamins or good bacteria helped them perform better.
View Article and Find Full Text PDF

Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota-diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor.

View Article and Find Full Text PDF

Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages.

View Article and Find Full Text PDF

While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations () has highlighted the importance of better understanding animal-fungus interactions. Regardless of their prominence there are few animal-fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems.

View Article and Find Full Text PDF

The taxonomic composition of microbial communities in animals varies among animal species, but the contribution of interspecific differences in filtering of the microbial pool by the animal host to this variation is uncertain. Here, we demonstrate significant interspecific variation in microbial community composition among laboratory-reared Drosophila species that was not related to host phylogeny. Complementary reciprocal transfer experiments yielded different microbial communities for a single microbiota administered to homologous and heterologous hosts (i.

View Article and Find Full Text PDF
Article Synopsis
  • Mosquito larvae, like Aedes aegypti, only grow when there are living bacteria in their guts, as opposed to when there aren't any.
  • The study showed that living bacteria, like E. coli, help larvae grow by creating conditions in their gut that signal for growth, while dead bacteria don't help at all.
  • Other living organisms, like yeast and algae, also help mosquito larvae grow, but they have to be alive—dead ones don’t work!
View Article and Find Full Text PDF

Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species.

View Article and Find Full Text PDF

Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions.

View Article and Find Full Text PDF

Almost all animals possess gut microbial communities, but the nature of these communities varies immensely. For example, in social bees and mammals, the composition is relatively constant within species and is dominated by specialist bacteria that do not live elsewhere; in laboratory studies and field surveys of , however, gut communities consist of bacteria that are ingested with food and that vary widely among individuals and localities. We addressed whether an ecological specialist in its natural habitat has a microbiota dominated by gut specialists or by environmental bacteria.

View Article and Find Full Text PDF

Many aspects of animal ecology and physiology are influenced by the microbial communities within them. The underlying forces contributing to the assembly and diversity of gut microbiotas include chance events, host-based selection and interactions among microorganisms within these communities. We surveyed 215 wild individuals from four sympatric species of Drosophila that share a common diet of decaying mushrooms.

View Article and Find Full Text PDF

As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health.

View Article and Find Full Text PDF

Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT).

View Article and Find Full Text PDF

Studies of newly emerged Apis mellifera worker bees have demonstrated that their guts are colonized by a consistent core microbiota within several days of eclosure. We conducted experiments aimed at illuminating the transmission routes and spatiotemporal colonization dynamics of this microbiota. Experimental groups of newly emerged workers were maintained in cup cages and exposed to different potential transmission sources.

View Article and Find Full Text PDF

Here, we report the genome of one gammaproteobacterial member of the gut microbiota, for which we propose the name "Candidatus Schmidhempelia bombi," that was inadvertently sequenced alongside the genome of its host, the bumble bee, Bombus impatiens. This symbiont is a member of the recently described bacterial order Orbales, which has been collected from the guts of diverse insect species; however, "Ca. Schmidhempelia" has been identified exclusively with bumble bees.

View Article and Find Full Text PDF

High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors.

View Article and Find Full Text PDF

Animals living in social communities typically harbor a characteristic gut microbiota important for nutrition and pathogen defense. Accordingly, in the gut of the honey bee, Apis mellifera, a distinctive microbial community, composed of a taxonomically restricted set of species specific to social bees, has been identified. Despite the ecological and economical importance of honey bees and the increasing concern about population declines, the role of their gut symbionts for colony health and nutrition is unknown.

View Article and Find Full Text PDF

Previous surveys have shown that adult honeybee (Apis mellifera) workers harbor a characteristic gut microbiota that may play a significant role in bee health. For three major phylotypes within this microbiota, we have characterized distributions and abundances across the life cycle and among gut organs. These distinctive phylotypes, called Beta, Firm-5, and Gamma-1 (BFG), were assayed using quantitative PCR, fluorescent in situ hybridization (FISH) microscopy, and the experimental manipulation of inoculation routes within developing bees.

View Article and Find Full Text PDF

Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera.

View Article and Find Full Text PDF