Splicing factors are often influenced by various signaling pathways, contributing to the dynamic changes of protein isoforms in cells. Heterogeneous ribonucleoproteins (hnRNPs) regulate many steps of RNA metabolism including pre-mRNA splicing but their control by cell signaling particularly through acetylation and ubiquitination pathways remains largely unknown. Here we show that TSA, a deacetylase inhibitor, reduced the ratio of Bcl-x splice variants Bcl-xL/xS in MDA-MB-231 breast cancer cells.
View Article and Find Full Text PDFThe molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes.
View Article and Find Full Text PDFMolecular mechanisms of gene regulation underlying the activity-dependent long term changes of cellular electrical properties, such as those during memory, are largely unknown. We have shown that alternative splicing can be dynamically regulated in response to membrane depolarization and Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) activation, through special CaM kinase responsive RNA elements. However, proteins that mediate this regulation and how they are affected by CaMKIV are not known.
View Article and Find Full Text PDFRegulation between protein kinases is critical for the establishment of signaling pathways/networks to 'orchestrate' cellular processes. Besides posttranslational phosphorylation, alternative pre-mRNA splicing is another way to control kinase properties, but splicing regulation between two kinases and the effect of resulting variants on cells has barely been explored. Here we examined the effect of the protein kinase A (PKA) pathway on the alternative splicing and variant properties of the Ca²⁺/calmodulin-dependent protein kinase kinase 2 (CaMKK2) gene in B35 neuroblastoma cells.
View Article and Find Full Text PDFAlternative pre-mRNA splicing is often controlled by cell signals, for example, those activating the cAMP-dependent protein kinase (PKA) or the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV). We have shown that CaMKIV regulates alternative splicing through short CA repeats and hnRNP L. Here we use a splicing reporter that shows PKA/CaMKIV promotion of exon inclusion to select from exons containing random 13-nt sequences for RNA elements responsive to the kinases in cultured cells.
View Article and Find Full Text PDF