We investigate the multilayered structures of poly(ethylene)oxide/montmorillonite nanocomposite films made from solution. The shear orientation of a polymer-clay network in solution combined with simultaneous solvent evaporation leads to supramolecular multilayer formation in the film. The resulting films have highly ordered structures with sheet-like multilayers on the micrometer length scale.
View Article and Find Full Text PDFMicrostructure plays an essential role in determining the properties of crystalline materials. A widely used method to influence microstructure is the addition of nucleating agents. Observations on films formed from clay-polymer blends indicate that particulate additives, in addition to serving as nucleating agents, may also perturb crystal growth, leading to the formation of irregular dendritic morphologies.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2002
The crystallization of polymeric and metallic materials normally occurs under conditions far from equilibrium, leading to patterns that grow as propagating waves into the surrounding unstable fluid medium. The Mullins-Sekerka instability causes these wave fronts to break up into dendritic arms, and we anticipate that the normal modes of the dendrite tips have a significant influence on pattern growth. To check this possibility, we focus on the dendritic growth of polyethylene oxide in a thin-film geometry.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2002
We show that the morphology of polyethylene oxide crystallization in thin films can be tuned to obtain circular spherulites, seaweed and symmetric dendrites, and fractal aggregation forms through the addition of clay particles and the amorphous polymer, polymethyl methacrylate. The thin-film polymer crystallization patterns are compared to a two-dimensional phase field model of dendritic growth in Ni/Cu alloys with a variable surface tension anisotropy epsilon. Some aspects of polymer crystallization patterns can be understood from the phase field calculations, but a more general model is required to describe the full range of observed patterns.
View Article and Find Full Text PDF