Publications by authors named "Vincent Everts"

Objective: Periostin (PN), a major matricellular periodontal ligament (PDL) protein, modulates the remodeling of the PDL and bone, especially under mechanical stress. This study investigated the requirement of PN-integrin signaling in force-induced expression of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) in human PDL stem cells (hPDLSCs).

Methods: Cells were stimulated with intermittent compressive force (ICF) using computerized controlled apparatus.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the effect of mechanical force on possible dynamic changes of the matrix proteins deposition in the PDL upon in vitro mechanical and in vivo occlusal forces in a rat model with hypofunctional conditions.

Materials And Methods: Intermittent compressive force (ICF) and shear force (SF) were applied to human periodontal ligament stem cells (PDLSCs). Protein expression of collagen I and POSTN was analyzed by western blot technique.

View Article and Find Full Text PDF

Iloprost's anti-inflammatory effects on human dental pulp stem cells (HDPCs) are currently unknown. We hypothesized that iloprost could downregulate the expression of inflammatory-related genes and protein in an inflamed HDPC in vitro model. To induce inflammation, the HDPCs were treated with a cocktail of interleukin-1 beta, interferon-gamma, and tumour necrosis alpha, at a ratio of 1:10:100.

View Article and Find Full Text PDF

One of the most prominent characteristics of bisphosphonate-related osteonecrosis of the jaw(BRONJ) is its site-specificity. Osteonecrosis tends to occur specifically in maxillofacial bones, in spite of a systemic administration of the medicine. Previous studies suggested rich blood supply and fast bone turnover might be reasons for BRONJ.

View Article and Find Full Text PDF

Introduction: This study evaluated the use of the prostacyclin analog iloprost as a root surface treatment agent in promoting acellular cementum (AC) formation and collagen reattachment after tooth replantation in vivo. In addition, its effect on human periodontal ligament cell (hPDLC) mineralization was assessed in vitro.

Methods: First molars of 8-week-old Wistar rats were extracted.

View Article and Find Full Text PDF

Objectives: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients.

Methods: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization.

View Article and Find Full Text PDF

Background: Recently we have generated recombinant human osteopontin (rhOPN) using a plant platform (Nicotiana benthamiana) and demonstrated, when coated on culture plates, its osteogenic induction capacity of human periodontal ligament (PDL) cells. The aim of this study is to elucidate the molecular mechanism underlying the rhOPN-induced osteogenic differentiation of human PDL cells.

Methods: Full length rhOPN (FL-OPN) and three constructs of OPN containing integrin binding domain (N142), calcium binding domain (C122) and mutated calcium-binding domain (C122δ) were generated from N.

View Article and Find Full Text PDF

The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load-bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural-functional contribution of elastin in the temporomandibular joint disc.

View Article and Find Full Text PDF

Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient () and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31 Ly-6C), myeloid blast (CD31 Ly-6C), and monocyte (CD31 Ly-6C) OCPs was assessed by flow cytometry.

View Article and Find Full Text PDF

Background: Toll-like receptors (TLR) are a group of receptors that play roles in the innate immune system. Human periodontal ligament cells (hPDL cells) express several TLRs, including TLR3, a nucleotide sensing receptor that recognizes double-stranded RNA from viral infection. However, its role in hPDL cells is unclear.

View Article and Find Full Text PDF

Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differentiation of hPDLCs was analyzed by bone nodule formation and gene expression.

View Article and Find Full Text PDF

The temporomandibular joint disc is a structure, characterized as heterogeneous fibrocartilage, and is composed of macromolecular biopolymers. Despite a large body of characterization studies, the contribution of matrix biopolymers on the dynamic viscoelastic behavior of the disc is poorly understood. Given the high permeability and low concentration of glycosaminoglycans in the disc, it has been suggested that poro-elastic behavior can be neglected and that the intrinsic viscoelastic nature of solid matrix plays a dominant role in governing its time-dependent behavior.

View Article and Find Full Text PDF

Objective: Cyclic tensile force (CTF) modulates physiological responses of periodontal ligament (PDL) cells. PDL cells are mechanosensitive and are able to maintain tissue homeostasis; a process mediated by the expression of particular cytokines including interleukin 6 (IL6). It is unknown whether CTF-induced IL6 regulates the expression of MMPs, enzymes needed for tissue remodeling.

View Article and Find Full Text PDF

Introduction: During dental pulp healing, progenitor cells migrate to the injured site. This study investigated the effect of iloprost (an exogenous prostacyclin [PGI]) on enhancing human dental pulp cell (HDPC) migration and its underlying mechanism.

Methods: HDPC migration was analyzed using a wound scratch assay.

View Article and Find Full Text PDF

The temporomandibular joint (TMJ), which differs anatomically and biochemically from hyaline cartilage-covered joints, is an under-recognized joint in arthritic disease, even though TMJ damage can have deleterious effects on physical appearance, pain and function. Here, we analyzed the effect of IL-1β, a cytokine highly expressed in arthritic joints, on TMJ fibrocartilage-derived cells, and we investigated the modulatory effect of mechanical loading on IL-1β-induced expression of catabolic enzymes. TMJ cartilage degradation was analyzed in 8-11-week-old mice deficient for IL-1 receptor antagonist (IL-1RA) and wild-type controls.

View Article and Find Full Text PDF

Electron microscopic analysis of mineralized tissues like bone and dentin is essential for understanding of cell-cell/cell-matrix interactions, and the three-dimensional organization of these tissues. This chapter describes a few methods to process mineralized tissues obtained from different sources for ultrastructural analysis by transmission electron microscopy.

View Article and Find Full Text PDF

Nutrition of articular cartilage relies mainly on diffusion and convection of solutes through the interstitial fluid due to the lack of blood vessels. The diffusion is controlled by two factors: steric hindrance and electrostatic interactions between the solutes and the matrix components. Aging comes with changes in the cartilage structure and composition, which can influence the diffusion.

View Article and Find Full Text PDF

Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs.

View Article and Find Full Text PDF

Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling.

View Article and Find Full Text PDF

Interleukin 12 (IL-12) is an inflammatory cytokine that promotes the response of the immune system. This cytokine has been implicated as a potent stimulator of several diseases characterized by inflammatory-induced bone destruction, such as rheumatoid arthritis and periodontitis. Yet, the exact role of IL-12 in the development and progress of periodontitis has not been clarified.

View Article and Find Full Text PDF

Objective: Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle.

View Article and Find Full Text PDF

Injury of the periodontium followed by inflammatory response often leads to root resorption. Resorption is accomplished by osteoclasts and their generation may depend on an interaction with the cells in direct contact with the root, the cementoblasts. Our study aimed to investigate the role of human cementoblasts in the formation of osteoclasts and the effect of interleukin (IL)-1β hereupon.

View Article and Find Full Text PDF