We report an assessment of the influence of both finger geometry and vertically-oriented carbon nanofiber lengths in planar micro-supercapacitors. Increasing the finger number leads to an up-scaling in areal power densities, which increases with scan rate. Growing the nanofibers longer, however, does not lead to a proportional growth in capacitance, proposedly related to limited ion penetration of the electrode.
View Article and Find Full Text PDFWe describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMA -b-AEMA /Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures.
View Article and Find Full Text PDF