Publications by authors named "Vincent Dani"

The expansion of adipose progenitor cells (APCs) plays an important role in the regeneration of the adipose tissue in physiological and pathological situations. The major role of CD26-expressing APCs in the generation of adipocytes has recently been highlighted, revealing that the CD26 APC subtype displays features of multipotent stem cells, giving rise to CD54- and CD142-expressing preadipocytes. However, a relevant human in vitro model to explore the regulation of the APC subpopulation expansion in lean and obese adipose tissue microenvironments is still lacking.

View Article and Find Full Text PDF

Several therapeutic options have been developed to address the obesity epidemic and treat associated metabolic diseases. Despite the beneficial effects of surgery and drugs, effective therapeutic solutions have been held back by the poor long-term efficiency and detrimental side effects. The development of alternative approaches is thus urgently required.

View Article and Find Full Text PDF

Brown and brown-like adipocytes (BAs) are promising cell targets to counteract obesity thanks to their potential to drain and oxidize circulating glucose and triglycerides. However, the scarcity of BAs in human adults is a major limitation for energy expenditure based therapies. Enhanced characterization of BA progenitor cells (BAPs) and identification of critical pathways regulating their generation and differentiation into mature BAs would be an effective way to increase the BA mass.

View Article and Find Full Text PDF

The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host-symbiont recognition processes and metabolic exchange between the 2 partners.

View Article and Find Full Text PDF

The symbiotic interaction between cnidarians, such as corals and sea anemones, and the unicellular algae Symbiodinium is regulated by yet poorly understood cellular mechanisms, despite the ecological importance of coral reefs. These mechanisms, including host-symbiont recognition and metabolic exchange, control symbiosis stability under normal conditions, but also lead to symbiosis breakdown (bleaching) during stress. This study describes the repertoire of the sterol-trafficking proteins Niemann-Pick type C (NPC1 and NPC2) in the symbiotic sea anemone Anemonia viridis.

View Article and Find Full Text PDF