The chemical bath deposition (CBD) process enables the deposition of ZnO nanowires (NWs) on various substrates with customizable morphology. However, the hydrogen-rich CBD environment introduces numerous hydrogen-related defects, unintentionally doping the ZnO NWs and increasing their electrical conductivity. The oxygen-based plasma treatment can modify the nature and amount of these defects, potentially tailoring the ZnO NW properties for specific applications.
View Article and Find Full Text PDFThe development of innovative heterostructures made of ZnO nanowires is of great interest for enhancing the performances of many devices in the fields of optoelectronics, photovoltaics, and energy harvesting. We report an original fabrication process to form ZnO/ZnGaO core-shell nanowire heterostructures in the framework of the wet chemistry techniques. The process involves the partial chemical conversion of ZnO nanowires grown via chemical bath deposition into ZnO/ZnGaO core-shell nanowire heterostructures with a high interface quality following their immersion in an aqueous solution containing gallium nitrate heated at a low temperature.
View Article and Find Full Text PDFAs a biocompatible semiconductor composed of abundant elements, ZnO, in the form of nanowires, exhibits remarkable properties, mainly originating from its wurtzite structure and correlated with its high aspect ratio at nanoscale dimensions [...
View Article and Find Full Text PDFThe growth of GaOOH by chemical bath deposition has received great attention over the past years as a first step to form GaO with the α- or β-phases by combining a wet chemical route with thermal annealing in air. By using gallium nitrate and sodium hydroxide in aqueous solution, we show that the structural morphology of GaOOH deposits is thoroughly tunable in terms of both dimensions, density, and nature by varying the initial pH value from acidic to basic conditions. In the low-pH region associated with a low supersaturation level and where Ga ions represent the dominant Ga(III) species, GaOOH microrods with a low aspect ratio and low density prevail.
View Article and Find Full Text PDFThe simultaneous co-doping of ZnO nanowires grown by chemical bath deposition is of high interest for a large number of engineering devices, but the process conditions required and the resulting physicochemical processes are still largely unknown. Herein, we show that the simultaneous co-doping of ZnO nanowires with Al and Ga following the addition of Al(NO) and Ga(NO) in the chemical bath operates in a narrow range of conditions in the high-pH region, where the adsorption processes of respective Al(OH) and Ga(OH) complexes on the positively charged -plane sidewalls are driven by attractive electrostatic forces. The structural morphology and properties of ZnO nanowires are significantly affected by the co-doping and mainly governed by the effect of Al(III) species.
View Article and Find Full Text PDFZnO nanowires (NWs) grown by chemical bath deposition (CBD) have received great interest for nanoscale engineering devices, but their formation in aqueous solution containing many impurities needs to be carefully addressed. In particular, the pH of the CBD solution and its effect on the formation mechanisms of ZnO NWs and of nitrogen- and hydrogen-related defects in their center are still unexplored. By adjusting its value in a low- and high-pH region, we show the latent evolution of the morphological and optical properties of ZnO NWs, as well as the modulated incorporation of nitrogen- and hydrogen-related defects in their center using Raman and cathodoluminescence spectroscopy.
View Article and Find Full Text PDFPiezoelectric ZnO-based composites have been explored as a flexible and compact sensor for the implantable biomedical systems used in cardio surgery. In this work, a progressive development route was investigated to enhance the performance of piezoelectric composites incorporated with different shape, concentration and connectivity of ZnO fillers. ZnO microrods (MRs) have been successfully synthesized homogeneously in aqueous solution using a novel process-based on chemical bath deposition (CBD) method.
View Article and Find Full Text PDFThe formation of nanowires by chemical bath deposition is of great interest for a wide variety of optoelectronic, piezoelectric, and sensing devices, from which the theoretical description of their elongation process has emerged as a critical issue. Despite its strong influence on the nanowire growth kinetics, reactor size has typically not been taken into account in the theoretical modeling developed so far. We report a new theoretical description of the axial growth rate of nanowires in dynamic conditions based on the solution of Fick's diffusion equations, implementing a sealed reactor of finite height as a varying parameter.
View Article and Find Full Text PDFExtremely thin absorber (ETA) solar cells made of ZnO/TiO/SbS core-shell nanowire heterostructures, using P3HT as the hole-transporting material (HTM), are of high interest to surpass solar cell efficiencies of their planar counterpart at lower material cost. However, no dimensional optimization has been addressed in detail, as it raises material and technological critical issues. In this study, the thickness of the SbS shell grown by chemical spray pyrolysis is tuned from a couple of nanometers to several tens of nanometers, while switching from a partially to a fully crystallized shell.
View Article and Find Full Text PDFThe selection of the polarity of ZnO nanowires grown by chemical bath deposition offers a great advantage for their integration into a wide variety of engineering devices. However, the nucleation process of ZnO nanowires and its dependence on their polarity is still unknown despite its importance for optimizing their morphology and properties and thus to enhance the related device performances. To tackle this major issue, we combine an analysis of the nucleation process of O- and Zn-polar ZnO nanowires on O- and Zn-polar ZnO single crystals, respectively, using synchrotron radiation-based grazing incidence X-ray diffraction with transmission and scanning electron microscopy.
View Article and Find Full Text PDFDue to the outstanding coupling between piezoelectric and semiconducting properties of zinc oxide nanowires, ZnO NW-based structures have been demonstrating promising potential with respect to their applicability in piezoelectric, piezotronic and piezo-phototronic devices. Particularly considering their biocompatibility and biosafety for applications regarding implantable medical detection, this paper proposed a new concept of piezoelectric composite, i.e.
View Article and Find Full Text PDFZnO nanowires are excellent candidates for energy harvesters, mechanical sensors, piezotronic and piezophototronic devices. The key parameters governing the general performance of the integrated devices include the dimensions of the ZnO nanowires used, their doping level, and surface trap density. However, although the method used to grow these nanowires has a strong impact on these parameters, its influence on the performance of the devices has been neither elucidated nor optimized yet.
View Article and Find Full Text PDFThe controlled incorporation of dopants like copper into ZnO nanowires (NWs) grown by chemical bath deposition (CBD) is still challenging despite its critical importance for the development of piezoelectric devices. In this context, the effects of the addition of copper nitrate during the CBD of ZnO NWs grown on Au seed layers are investigated in detail, where zinc nitrate and hexamethylenetetramine are used as standard chemical precursors and ammonia as an additive to tune the pH. By combining thermodynamic simulations with chemical and structural analyses, we show that copper oxide nanocrystals simultaneously form with ZnO NWs during the CBD process in the low-pH region associated with large supersaturation of Cu species.
View Article and Find Full Text PDFβ-GaO microrods have attracted increasing attention for their integration into solar blind/UV photodetectors and gas sensors. However, their synthesis using a low-temperature chemical route in aqueous solution is still under development, and the physicochemical processes at work have not yet been elucidated. Here, we develop a double-step process involving the growth of α-GaOOH microrods on silicon using chemical bath deposition and their further structural conversion to β-GaO microrods by postdeposition thermal treatment.
View Article and Find Full Text PDFZnO thin films and nanostructures have received increasing interest in the field of piezoelectricity over the last decade, but their formation mechanisms on silicon when using pulsed-liquid injection metal-organic chemical vapor deposition (PLI-MOCVD) are still open to a large extent. Also, the effects of their morphology, dimensions, polarity, and electrical properties on their piezoelectric properties have not been completely decoupled yet. By only tuning the growth temperature from 400 to 750 °C while fixing the other growth conditions, the morphology transition of ZnO deposits on silicon from stacked thin films to nanowires through columnar thin films is shown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Polarity-controlled growth of ZnO by chemical bath deposition provides a method for controlling the crystal orientation of vertical nanorod arrays. The ability to define the morphology and structure of the nanorods is essential to maximizing the performance of optical and electrical devices such as piezoelectric nanogenerators; however, well-defined Schottky contacts to the polar facets of the structures have yet to be explored. In this work, we demonstrate a process to fabricate metal-semiconductor-metal device structures from vertical arrays with Au contacts on the uppermost polar facets of the nanorods and show that the O-polar nanorods (∼0.
View Article and Find Full Text PDFThe addition of polyethylenimine (PEI) in the standard chemical bath deposition (CBD) of ZnO nanowires has received an increasing interest for monitoring their aspect ratio, but the physicochemical processes at work are still under debate. To address this issue, the effects of PEI are disentangled from the effects of ammonia and investigated over a broad range of molecular weight (i.e.
View Article and Find Full Text PDFZnO nanowires grown by chemical bath deposition (CBD) are of high interest, but their doping with extrinsic elements including gallium in aqueous solution is still challenging despite its primary importance for transparent electrodes and electronics, and for mid-infrared plasmonics. We elucidate the formation mechanisms of ZnO nanowires by CBD using zinc nitrate and hexamethylenetetramine as standard chemical precursors, as well as gallium nitrate and ammonia as chemical additives. A complete growth diagram, revealing the effects of both the relative concentration of gallium nitrate and pH, is gained by combining a thorough experimental approach with thermodynamic computations yielding theoretical solubility plots as well as Zn(II) and Ga(III) speciation diagrams.
View Article and Find Full Text PDFAs an abundant and non-toxic wide band gap semiconductor with a high electron mobility, ZnO in the form of nanowires (NWs) has emerged as an important electron transporting material in a vast number of nanostructured solar cells. ZnO NWs are grown by low-cost chemical deposition techniques and their integration into solar cells presents, in principle, significant advantages including efficient optical absorption through light trapping phenomena and enhanced charge carrier separation and collection. However, they also raise some significant issues related to the control of the interface properties and to the technological integration.
View Article and Find Full Text PDFZnO nanowires are considered as attractive building blocks for piezoelectric devices, including nano-generators and stress/strain sensors. However, their integration requires the use of metallic seed layers, on top of which the formation mechanisms of ZnO nanowires by chemical bath deposition are still largely open. In order to tackle that issue, the nucleation and growth mechanisms of ZnO nanowires on top of Au seed layers with a thickness in the range of 5-100 nm are thoroughly investigated.
View Article and Find Full Text PDFControlling the formation of ZnO nanowire (NW) arrays on a wide variety of substrates is crucial for their efficient integration into nanoscale devices. While their nucleation and growth by chemical bath deposition (CBD) have intensively been investigated on non-polar and polar c-plane ZnO surfaces, their formation on alternatively oriented ZnO surfaces has not been addressed yet. In this work, the standard CBD technique of ZnO is investigated on [Formula: see text] and [Formula: see text] semipolar ZnO single crystal surfaces.
View Article and Find Full Text PDFThe elucidation of the fundamental processes in aqueous solution during the chemical bath deposition of ZnO nanowires (NWs) using zinc nitrate and hexamethylenetetramine is of great significance: however, their extrinsic doping by foreign elements for monitoring their optical and electrical properties is still challenging. By combining thermodynamic simulations yielding theoretical solubility plots and speciation diagrams with in situ pH measurements and structural, chemical, and optical analyses, we report an in-depth understanding of the pH effects on the formation and aluminum doping mechanisms of ZnO NWs. By the addition of aluminum nitrate with a given relative concentration for the doping and of ammonia over a broad range of concentrations, the pH is shown to strongly influence the shape, diameter, length, and doping magnitude of ZnO NWs.
View Article and Find Full Text PDFPolarity is known to affect the growth and properties of ZnO single crystals and epitaxial films, but its effects are mostly unknown in ZnO nanorods. To leave polarity as the only varying parameter, ZnO nanorods are grown by chemical bath deposition under identical conditions and during the same run on O- and Zn-polar ZnO single crystals patterned by electron beam lithography with the same pattern consisting of 15 different domains. The resulting well-ordered O- and Zn-polar ZnO nanorod arrays with high structural uniformity are formed on all the domains.
View Article and Find Full Text PDFIdentifying and mapping the crystalline phases and orientation relationships on the local scale in core-shell ZnO nanowire heterostructures are of primary importance to improve the interface quality, which governs the performances of the nanoscale devices. However, this represents a major difficulty, especially when the expected polytypes exhibit very similar properties as in the case of CdSe. In the present work, we address that issue in ZnO nanowire heterostructures involving a uniform and highly conformal CdSe shell grown by molecular beam epitaxy.
View Article and Find Full Text PDF