We present the operating principle and the first observing run of a novel kind of direct detector for axions and axionlike particles in the galactic halo. Sensitive to the polarisation rotation of linearly polarised laser light induced by an axion field, our experiment is the first detector of its kind collecting scientific data. We discuss our peak sensitivity of 1.
View Article and Find Full Text PDFWe present an interferometric sensor for investigating macroscopic quantum mechanics on a table-top scale. The sensor consists of a pair of suspended optical cavities with finesse over 350,000 comprising 10 g fused silica mirrors. The interferometer is suspended by a four-stage, light, in-vacuum suspension with three common stages, which allows for us to suppress common-mode motion at low frequency.
View Article and Find Full Text PDFMulti-core optical fibers are readily used in endoscopic devices to transmit classical images. As an extension to the quantum domain, we study the transmission of the spatial quantum fluctuations of light through a conduit made of the ordered packing of thousands of fibers. Starting from twin beams that are correlated in their local intensity fluctuations, we show that, in the limit of a high density of constituent fiber cores, the intensity-difference squeezing present in arbitrary matching regions of the beams is preserved when one of the beams is sent through the conduit.
View Article and Find Full Text PDFWe experimentally study a homodyne detection technique for the characterization of a quadrature squeezed field where the correlated bands, here created by four-wave mixing in a hot atomic vapor, are separated by a large frequency gap of more than 6 GHz. The technique uses a two-frequency local oscillator to detect the fluctuations of the correlated bands at a frequency accessible to the detection electronics. Working at low detection frequency, the method allows for the determination of both the amplitude and the phase of the squeezing spectrum.
View Article and Find Full Text PDFThe entanglement properties of two beams of light can reside in subtle correlations that exist in the unavoidable quantum fluctuations of their amplitudes and phases. Recent advances in the generation of nonclassical light with four-wave mixing in an atomic vapor have permitted the production and the observation of entanglement that is localized in almost arbitrary transverse regions of a pair of beams. These multi-spatial-mode entangled beams may prove useful for an array of applications ranging from noise-free imaging and improved position sensing to quantum information processing.
View Article and Find Full Text PDFTwo beams of light can be quantum mechanically entangled through correlations of their phase and intensity fluctuations. For a pair of spatially extended image-carrying light fields, the concept of entanglement can be applied not only to the entire images but also to their smaller details. We used a spatially multimode amplifier based on four-wave mixing in a hot vapor to produce twin images that exhibit localized entanglement.
View Article and Find Full Text PDF