The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells.
View Article and Find Full Text PDFElevated growth in breast cancer (BC) activates hypoxia-inducible factor (HIF1α) and downstream, facilitative glucose transporter 1 (GLUT1), which can be visualized with 2-deoxy-2-[F]fluoro-d-glucose ([F]FDG). GLUT5 (fructose) and GLUT2 (glucose/fructose) might provide alternative targets for BC imaging as to why effects of hypoxia on GLUT1/2/5 levels and function were examined in human BC models. GLUT1/2/5 and HIF1α mRNA was analyzed in BC patient biopsies.
View Article and Find Full Text PDFUse of [F]FDG-positron emission tomography (PET) in clinical breast cancer (BC) imaging is limited mainly by insufficient expression levels of facilitative glucose transporter (GLUT)1 in up to 50% of all patients. Fructose-specific facilitative hexose transporter GLUT5 represents an alternative biomarker for PET imaging of hexose metabolism in BC. The goal of the present study was to compare the uptake characteristics of selected hexose-based PET radiotracers in murine BC model EMT6.
View Article and Find Full Text PDFPurpose: Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies.
View Article and Find Full Text PDFAnti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models.
View Article and Find Full Text PDFBackground: Prostate-specific membrane antigen (PSMA) is frequently overexpressed and upregulated in prostate cancer. To date, various (18)F- and (68)Ga-labeled urea-based radiotracers for PET imaging of PSMA have been developed and entered clinical trials. Here, we describe an automated synthesis of [(18)F]DCFPyL via direct radiofluorination and validation in preclinical models of prostate cancer.
View Article and Find Full Text PDF6-Deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[(18)F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and dosimetry calculations are important prerequisites for first-in-human clinical studies of 6-[(18)F]FDF.
View Article and Find Full Text PDF6-Deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[(18)F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and dosimetry calculations are important prerequisites for first-in-human clinical studies of 6-[(18)F]FDF.
View Article and Find Full Text PDFRadiolabeling of peptides with the short-lived positron emitter fluorine-18 is usually a challenging endeavour. Conventional radiolabeling reactions mostly require fairly large amounts of peptides as labeling precursors, and extensive synthesis times. Intrinsic advantages of microfluidic technology permit to overcome these hurdles.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone responsible for protein quality control in cells. Hsp90 has been shown to be overexpressed in many human cancers. This has prompted extensive research on Hsp90 inhibitors as novel anticancer agents and, more recently, the development of molecular probes for imaging Hsp90 expression in vivo.
View Article and Find Full Text PDFIntroduction: Phosphopeptides represent interesting compounds to study and elucidate cellular protein phosphorylation/dephosphorylation processes underlying various signal transduction pathways. However, studies of phosphopeptide action in cells are severely constrained by the negatively charged phosphate moiety of the phosphopeptide resulting in poor transport through the cell membrane. The following study describes the synthesis and radiopharmacological evaluation of two (18)F-labeled phosphopeptide-cell-penetrating peptide dimers.
View Article and Find Full Text PDFA new synthesis of O-(2-[(18)F]fluoroethyl)-L-tyrosine [(18)F]FET was developed using a NanoTek® microfluidic synthesis system (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, reaction time, concentration of the labeling precursor, and the applied volume ratio between the labeling precursor and [(18)F]fluoride.
View Article and Find Full Text PDFOrg Biomol Chem
November 2011
The copper-free strain-promoted click chemistry between (18)F-labeled aza-dibenzocyclooctyne [(18)F]FB-DBCO and various azides is described. [(18)F]FB-DBCO was prepared in 85% isolated radiochemical yield (decay-corrected) through acylation of amino aza-dibenzocyclooctyne 1 with N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB). [(18)F]FB-DBCO showed promising radiopharmacological profil with fast blood clearance as assessed with dynamic small animal PET studies.
View Article and Find Full Text PDFIntroduction: Microfluidic technology allows fast reactions in a simple experimental setup, while using very low volumes and amounts of starting material. Consequently, microfluidic technology is an ideal tool for radiolabeling reactions involving short-lived positron emitters. Optimization of the complex array of different reaction conditions requires knowledge of the different reaction parameters linked to the microfluidic system as well as their influence on the radiochemical yields.
View Article and Find Full Text PDFA short and high-yielding synthesis has been devised to prepare C-linked 2-deoxy-2-acetamido-alpha-D-galactopyranose derivative 3. One of the main advantages of this approach is that it employs commercially available and inexpensive d-glucosamine as the starting material. The key steps include a highly stereoselective C-allylation followed by epimerization of the C-4 hydroxyl group.
View Article and Find Full Text PDFBiomacromolecules
February 2006
Antifreeze glycoproteins (AFGPs) have many potential applications ranging from the cryopreservation and hypothermic storage of tissues and organs to the preservation of various frozen food products. Since supplying native AFGP for these applications is a labor-intensive and costly process, the rational design and synthesis of functional AFGP analogues is a very attractive alternative. While structure-function studies have implicated specific structural motifs as essential for antifreeze activity in AFGP, the relationship between solution conformation and antifreeze activity is poorly understood.
View Article and Find Full Text PDFCell Biochem Biophys
May 2004
Antifreeze glycoproteins (AFGPs) are a novel class of biologically significant compounds that possess the ability to inhibit the growth of ice both in vitro and in vivo. Any organic compound that possesses the ability to inhibit the growth of ice has many potential medical, industrial, and commercial applications. In an effort to elucidate the molecular mechanism of action, various spectroscopic and physical techniques have been used to investigate the solution conformations of these glycoproteins.
View Article and Find Full Text PDF