Specific ion effects on the structure and function of many biological macromolecules, their associations, colloidal systems, interfacial phenomena, and even "simple" electrolytes solutions are ubiquitous. The molecular origin of such phenomena is discussed either as a salt-induced change of the water structure (the hydrogen bond network) or some specific (solvent mediated) interactions of one or both of the ions of the electrolyte with the investigated co-solute (macromolecules or colloidal particles). The case of hydrogels is of high interest but is only marginally explored with respect to other physico-chemical systems because they are formed through the interactions of gelling agents in the presence of water and the added electrolyte.
View Article and Find Full Text PDFBackground: Detection of retained foreign bodies (FB) is a difficult task in both austere environments and emergency departments, particularly when they are radiolucent and not detectable by plain radiographs. Failure to identify and remove them can lead to increased morbidity.
Objective: To determine the accuracy of Special Forces (SF) medics in detecting wooden FBs in tissue models, using point-of-care ultrasound.
The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres.
View Article and Find Full Text PDFInspired by the eumelanin aggregates in human skin, polydopamine nanoparticles (PDA NPs) are promising nanovectors for biomedical applications, especially because of their biocompatibility. We synthesized and characterized fluorescent PDA NPs of 10-25 nm diameter based on a protein containing a lysine-glutamate diad (bovine serum albumin, BSA) and determined whether they can penetrate and accumulate in bacterial cells to serve as a marker or drug nanocarrier. Three fluorescent PDA NPs were designed to allow for tracking in three different wavelength ranges by oxidizing BSA/PDA NPs (Ox-BSA/PDA NPs) or labelling with fluorescein 5-isothiocyanate (FITC-BSA/PDA NPs) or rhodamine B isothiocyanate (RhBITC-BSA/PDA NPs).
View Article and Find Full Text PDFBioinspired adhesives have been increasingly developed, especially towards a biomedical application. Therefore, in this study, dopamine (DA) was oxidized into polydopamine (PDA) in a gelatin mixture via titration with NaIO as a strong oxidant to easily obtain an adhesive antioxidant and self-healing PDA-gelatin hydrogel. Rheology experiments show a stiffness in the order of kPa and a thermal resistance above 50 °C, much above the gel-sol transition temperature of pristine gelatin.
View Article and Find Full Text PDFBackground: The optimal revascularization strategy in patients with left main coronary artery (LMCA) disease in the emergency setting is still controversial. Thus, we aimed to compare the outcomes of percutaneous coronary interventions (PCI) vs. coronary artery bypass grafting (CABG) in patients with and without emergent LMCA disease.
View Article and Find Full Text PDFThe surface properties of a biomaterial play an important role in cell behavior, e.g., recolonization, proliferation, and migration.
View Article and Find Full Text PDF(1) Background: Gelatin is widely used in food science, bioengineering, and as a sealant. However, for most of those applications, the mechanical properties of gelatin gels need to be improved by means of physical or chemical crosslinking. Among the used chemical agents, genipin allows low cytotoxicity in addition to improved Young's modulus.
View Article and Find Full Text PDFIn 2007, polydopamine (PDA) films were shown to be formed spontaneously on the surface of all known classes of materials by simply dipping those substrates in an aerated dopamine solution at pH = 8.5 in the presence of Tris(hydroxymethyl) amino methane buffer. This universal deposition method has raised a burst of interest in surface science, owing not only to the universality of this water based one pot deposition method but also to the ease of secondary modifications.
View Article and Find Full Text PDFThe aims of this study were to develop topical liposomal hydrogels based on thermal waters (TWs) acquired in the region of Biskra (Northeast Algeria) and also to investigate their rheological properties. Liposomes containing two highly mineralized thermal waters, Baraka (BTW) and Salhine (STW), were prepared by probe sonication using phosphatidylcholine (PC) and cholesterol (Chol), plain or mixed with phosphatidylglycerol (PG). Based on their lipid composition, obtained liposomes presented vesicle sizes of 60 nm, a low polydispersity index, and various negative zeta potentials.
View Article and Find Full Text PDFThe surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration.
View Article and Find Full Text PDFThe salivary contamination occurring at the try-in procedures of lithium disilicate (LDS) can jeopardize their bond strength. Various laboratory reports have concluded that applying 37% phosphoric acid (HPO) could be considered as a predictable way of removing salivary contaminants. An experimental method that consists of sealing the intaglio of the ceramic restorations with a layer of cured adhesive could allow consequent time saving for dental practitioners.
View Article and Find Full Text PDFHypothesis: The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity.
Experiments: MeDHICA and HMDA were reacted in aqueous buffer, pH 9.
In the last years coating of surfaces in the presence of dopamine or other catecholamines in oxidative conditions to yield "polydopamine" films has become a popular, easy and versatile coating methodology. Polydopamine(s) offer(s) also a rich chemistry allowing to post-functionalize the obtained coatings with metal nanoparticles with polymers and proteins. However, the interactions either of covalent or non-covalent nature between polydopamine and biomolecules has only been explored more recently.
View Article and Find Full Text PDFThe synthesis of surgical adhesives is based on the need to design glues that give rise to strong and fast bonds without cytotoxic side effects. A recent trend in surgical adhesives is to use gel-forming polymers modified with catechol groups, which can undergo oxidative crosslinking reactions and are strongly adhesive to all kinds on surfaces in wet conditions. We previously showed that blending gelatin with catechol can yield strong adhesion when the catechol is oxidized by a strong oxidant.
View Article and Find Full Text PDFThis study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated.
View Article and Find Full Text PDFThe design of bioactive plasters is of major interest for the amelioration of dental and bone cements. In this article, a one pot and environmentally friendly strategy based on the addition of a cheap polyphenol-tannic acid (TA) or the main phenolic constituent of TA, namely pyrogallol (PY)- able to interact with calcium sulfate is proposed. Tannic acid and pyrogallol not only modify the morphology of the obtained plaster+TA/PY composites but a part of it is released and provides strong-up to twenty fold- antibacterial effect against Staphylococcus aureus.
View Article and Find Full Text PDFDental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression.
View Article and Find Full Text PDFThis study investigated the antibacterial activity, bond strength to dentin (SBS), and ultra-morphology of the polymer-dentin interface of experimental adhesive systems doped with pyrogallol (PY), which is a ubiquitous phenolic moiety that is present in flavonoids and polyphenols. A universal adhesive containing 4-META and 10-MDP was used in this study. PY behaves as an antioxidant and anti-cancerogenic agent and it was incorporated into the adhesive at different concentrations (0.
View Article and Find Full Text PDFHypothesis: The setting time and mechanical properties of cements are a major technical concern for a long time in civil engineering. More recently those practical problems became a major concern for biomedical applications -in bone surgery and in dentistry- in particular concerning the setting time which should be minimized. The possibility to add organic additives to interact with the different constituting ions in cements constitutes a way to modify the setting kinetics.
View Article and Find Full Text PDFHere, we present a correlative microscopic analysis of electrodeposited films from catechol solutions in aqueous electrolytes. The films were prepared in a miniaturized electrochemical cell and were analyzed by identical location transmission electron microscopy, scanning transmission X-ray microscopy, and atomic force microscopy. Thanks to this combined approach, we have shown that the electrodeposited films are constituted of ultrathin graphite oxide nanosheets.
View Article and Find Full Text PDFPolydopamine (PDA) nanoparticles are versatile structures that can be stabilized with proteins. In this study, we have demonstrated the feasibility of developing PDA/polypeptides complexes in the shape of nanoparticles. The polypeptide can also render the nanoparticle functional.
View Article and Find Full Text PDFThe tyrosinase-catalyzed oxidation of tyramine, leading to the deposition of pseudo-polydopamine (ψ-PDA) thin films, is disclosed herein as a superior technology for surface functionalization and coating at a neutral pH and at a low substrate concentration, compared to the standard autoxidative PDA coating protocols. Smooth ψ-PDA thin films of variable thickness up to 87 nm were obtained from 1 mM tyramine by varying tyrosinase concentrations (5-100 U/mL). Compared to the PDA films obtained by the similar enzymatic oxidation of 1 mM dopamine with tyrosinase (T-PDA), ψ-PDA displayed slower deposition kinetics, lower water contact angles in the range of 11°-28°, denoting higher hydrophilicity but similar UV-vis absorption profiles, as well as electrochemical properties and antioxidant activity.
View Article and Find Full Text PDFBackground: Atherosclerotic coronary plaque dissection (ACPD) is one cause of acute coronary syndrome (ACS) caused by underlying atherosclerosis. Spontaneous coronary artery dissection (SCAD) occurs outside the setting of atherosclerosis among young women and individuals with few or no conventional atherosclerotic risk factors, and has emerged as an important cause of ACS, and sudden death. A comparison between ACPD and SCAD has not been previously addressed in the literature.
View Article and Find Full Text PDF(1) Background: polyphenols are a broad class of molecules extracted from plants and have a large repertoire of biological activities. Biomimetic inspiration from the effects of tea or red wine on the surface of cups or glass lead to the emergence of versatile surface chemistry with polyphenols. Owing to their hydrogen bonding abilities, coordination chemistry with metallic cations and redox properties, polyphenols are able to interact, covalently or not, with a large repertoire of chemical moieties, and can hence be used to modify the surface chemistry of almost all classes of materials.
View Article and Find Full Text PDF