Publications by authors named "Vincent A Viblanc"

Article Synopsis
  • Phenotypic differences in animals can arise from genetic factors or adaptations to their environment, but how social environments affect these traits is less understood.
  • In a study involving king penguins, researchers exchanged eggs between high-density and low-density breeding pairs to assess the impact of social environments on both adult and chick traits.
  • Results revealed that adults in high-density areas exhibited increased stress-related behaviors, while chicks were more positively influenced by their rearing environment, showing better growth and survival, regardless of their genetic background.
View Article and Find Full Text PDF

Demography of herbivorous mammal populations may be affected by changes in predation, population density, harvesting, and climate. Whereas numerous studies have focused on the effect of single environmental variables on individual demographic processes, attempts to integrate the consequences of several environmental variables on numerous functional traits and demographic rates are rare. Over a 32-year period, we examined how forage availability (vegetation assessed through NDVI) and population density affected the functional traits and demographic rates of a population of Columbian ground squirrels (Urocitellus columbianus), a herbivorous hibernating rodent.

View Article and Find Full Text PDF

The measurement of glucocorticoid (GC) hormones provides us with a window into the stress physiology of vertebrates and the adaptative responses they use to cope with predictable and unpredictable changes in the environment. Baseline GCs inform us about the metabolic demands they are subject to at that point in their yearly life-history stage, whereas GC changes (often increases) in response to acute challenges inform us on their capacity to cope with more immediate environmental challenges. However, baseline GC levels and the kinetics of GC responses to acute stressors can vary substantially among and within species, depending on individual characteristics (age, sex, condition, life-history stage).

View Article and Find Full Text PDF

Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1.

View Article and Find Full Text PDF

In avian species, the number of chicks in the nest and subsequent sibling competition for food are major components of the offspring's early-life environment. A large brood size is known to affect chick growth, leading in some cases to long-lasting effects for the offspring, such as a decrease in size at fledgling and in survival after fledging. An important pathway underlying different growth patterns could be the variation in offspring mitochondrial metabolism through its central role in converting energy.

View Article and Find Full Text PDF

Inclement weather can rapidly modify the thermal conditions experienced by animals, inducing changes in their behavior, body condition, and stress physiology, and affecting their survival and breeding success. For animals living in variable environments, the extent to which they have adapted to cope with inclement weather is not established, especially for hibernating species with a short active season that are constrained temporally to breed and store energy for subsequent hibernation. We examined behavioral (foraging activity) and physiological (body mass and fecal cortisol metabolites) responses of Columbian ground squirrels (Urocitellus columbianus), small hibernating rodents inhabiting open meadows in Rocky Mountains, to 3 events of inclement weather (two snow storms in May 2021 and May 2022, one heavy rainfall in June 2022).

View Article and Find Full Text PDF

Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health.

View Article and Find Full Text PDF

Group living is thought to have important antipredator benefits for animals, owing to the mechanisms of shared vigilance ("many-eyes" hypothesis), risk dilution ("dilution effect" hypothesis), and relative safety in the center of the group ("selfish herd" hypothesis). However, it can also incur costs since social stimuli, such as conspecific aggression, may distract individuals from anti-predator behavior ("distracted prey" hypothesis). We simultaneously evaluated how these four different hypotheses shape anti-predator behaviors of breeding king penguins (Aptenodytes patagonicus), which aggregate into large colonies, experience frequent aggressive social interactions, and are regularly exposed to predation by giant petrels (Macronectes sp.

View Article and Find Full Text PDF

Living in social groups may exacerbate interindividual competition for territory, food, and mates, leading to stress and possible health consequences. Unfavorable social contexts have been shown to elevate glucocorticoid levels (often used as biomarkers of individual stress), but the downstream consequences of socially stressful environments are rarely explored. Our study experimentally tests the mechanistic links between social aggression, oxidative stress, and somatic maintenance in captive zebra finches ().

View Article and Find Full Text PDF

Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology.

View Article and Find Full Text PDF

Telomeres are specialized non-coding DNA sequences located at the end of chromosomes and that protect genetic information. Telomere loss over lifespan is generally viewed as a phenomenon associated with aging in animals. Recently, telomere elongation after hibernation has been described in several mammals.

View Article and Find Full Text PDF

Developmental plasticity is partly mediated by transgenerational effects, including those mediated by the maternal endocrine system. Glucocorticoid and thyroid hormones may play central roles in developmental programming through their action on metabolism and growth. However, the mechanisms by which they affect growth and development remain understudied.

View Article and Find Full Text PDF

Social environments can profoundly affect the behavior and stress physiology of group-living animals. In many territorial species, territory owners advertise territorial boundaries to conspecifics by scent marking. Several studies have investigated the information that scent marks convey about donors' characteristics (e.

View Article and Find Full Text PDF

Parental allocation of resources into male or female offspring and differences in the balance of offspring sexes in natural populations are central research topics in evolutionary ecology. Fisher (Fisher, R. A.

View Article and Find Full Text PDF

Low mortality rate is often associated with slow life history, and so far, has mainly been assessed through examinations of specific adaptations and lifestyles that limit mortality risk. However, the organization of activity time budgets also needs to be considered, since some activities and the time afforded for performing them may expose animals to higher mortality risks such as increased predation and/or increased metabolic stress. We examined the extent of activity time budgets contribution to explaining variation in life history traits in mammals.

View Article and Find Full Text PDF

Because telomere length and dynamics relate to individual growth, reproductive investment and survival, telomeres have emerged as possible markers of individual quality. Here, we tested the hypothesis that, in species with parental care, parental telomere length can be a marker of parental quality that predicts offspring phenotype and survival. In king penguins (Aptenodytes patagonicus), we experimentally swapped the single egg of 66 breeding pairs just after egg laying to disentangle the contribution of prelaying parental quality (e.

View Article and Find Full Text PDF

Exposure to unpredictable environmental stressors could influence animal health and fitness by inducing oxidative stress, potentially through downstream effects of glucocorticoid stress hormones (e.g. corticosterone) on mitochondrial function.

View Article and Find Full Text PDF

Parasites affect many aspects of host physiology and behavior, and thus are generally thought to negatively impact host fitness. However, changes in form of short-term parasite effects on host physiological markers have generally been overlooked in favor of fitness measures. Here, we studied flea ( and ) parasitism on a natural population of Columbian ground squirrels () in Sheep River Provincial Park, AB, Canada.

View Article and Find Full Text PDF

Sexual selection and social selection are two important theories proposed for explaining the evolution of colorful ornamental traits in animals. Understanding signal honesty requires studying how environmental and physiological factors during development influence the showy nature of sexual and social ornaments. We experimentally manipulated physiological stress and immunity status during the molt in adult king penguins (), and studied the consequences of our treatments on colourful ornaments (yellow-orange and UV beak spots and yellow-orange auricular feather patches) known to be used in sexual and social contexts in this species.

View Article and Find Full Text PDF

A large number of studies have focused on the reactivity of the hypothalamic-pituitaryadrenal (HPA) axis and the consequences of glucocorticoids (GC) in mediating life-history trade-offs. Although short-term increases in GCs are viewed as adaptive, mobilizing energy substrates allowing animals to deal with impending threats (e.g.

View Article and Find Full Text PDF

Natural selection is expected to favour the integration of dispersal and phenotypic traits allowing individuals to reduce dispersal costs. Accordingly, associations have been found between dispersal and personality traits such as aggressiveness and exploration, which may facilitate settlement in a novel environment. However, the determinism of these associations has only rarely been explored.

View Article and Find Full Text PDF

In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reduce metabolic rate to ensure a longer usage of reserves. However, those metabolic changes can be associated with higher exposure to oxidative stress, raising the question of how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods of up to several weeks.

View Article and Find Full Text PDF