Escherichia coli YoaA aids in the resolution of DNA damage that halts DNA synthesis in vivo in conjunction with χ, an accessory subunit of DNA polymerase III. YoaA and χ form a discrete complex separate from the DNA polymerase III holoenzyme, but little is known about how YoaA and χ work together to help the replication fork overcome damage. Although YoaA is predicted to be an iron-sulfur helicase in the XPD/Rad3 helicase family based on sequence analysis, the biochemical activities of YoaA have not been described.
View Article and Find Full Text PDFEfficient and faithful replication of DNA is essential for all organisms. However, the replication fork frequently encounters barriers that need to be overcome to ensure cell survival and genetic stability. Cells must carefully balance and regulate replication vs.
View Article and Find Full Text PDFElongating DNA polymerases frequently encounter lesions or structures that impede progress and require repair before DNA replication can be completed. Therefore, directing repair factors to a blocked fork, without interfering with normal replication, is important for proper cell function, and it is a process that is not well understood. To study this process, we have employed the chain-terminating nucleoside analog, 3' azidothymidine (AZT) and the E.
View Article and Find Full Text PDFStrand misalignments at DNA repeats during replication are implicated in mutational hotspots. To study these events, we have generated strains carrying mutations in the Escherichia coli chromosomal lacZ gene that revert via deletion of a short duplicated sequence or by template switching within imperfect inverted repeat (quasipalindrome, QP) sequences. Using these strains, we demonstrate that mutation of the distal repeat of a quasipalindrome, with respect to replication fork movement, is about 10-fold higher than the proximal repeat, consistent with more common template switching on the leading strand.
View Article and Find Full Text PDFThe initiation of replication in bacteria is regulated via the initiator protein DnaA. ATP-bound DnaA binds to multiple sequences at the origin of replication, oriC, unwinding the DNA and promoting the binding of DnaB helicase. From an Escherichia coli mutant highly perturbed for replication control, obgE::Tn5-EZ seqADelta, we isolated multiple spontaneous suppressor mutants with enhanced growth and viability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2007
Genetic recombination in bacteria is facilitated by the RecA strand transfer protein and strongly depends on the homology between interacting sequences. RecA-independent recombination is detectable but occurs at extremely low frequencies and is less responsive to the extent of homology. In this article, we show that RecA-independent recombination in Escherichia coli is depressed by the redundant action of single-strand exonucleases.
View Article and Find Full Text PDFDam methylase mutants were recovered in a screen for mutants sensitive to UV irradiation or mild inhibition of replication elongation. Dam's role in tolerance of DNA damage is to provide binding sites for SeqA, because seqA mutants showed similar sensitivity that was genetically epistatic to dam. The sensitivity of seqA mutants to UV irradiation and to the replication inhibitors hydroxyurea (HU) and azidothymidine (AZT) was suppressed by alleles of dnaA that reduce the efficiency of replication initiation.
View Article and Find Full Text PDFWe propose that rearrangements between short tandem repeated sequences occur by errors made during a replication fork repair pathway involving a replication template switch. We provide evidence here that the DnaK chaperone of E. coli controls this template switch repair process.
View Article and Find Full Text PDFThe RecJ exonuclease from Escherichia coli degrades single-stranded DNA (ssDNA) in the 5'-3' direction and participates in homologous recombination and mismatch repair. The experiments described here address RecJ's substrate requirements and reaction products. RecJ complexes on a variety of 5' single-strand tailed substrates were analyzed by electrophoretic mobility shift in the absence of Mg2+ ion required for substrate degradation.
View Article and Find Full Text PDFTo define factors in E. coli promoting survival to replication fork stress, we isolated insertion mutants sensitive to replication inhibitors. One insertion caused partial loss of the universally conserved GTPase, obgE/yhbZ gene.
View Article and Find Full Text PDFWe have developed an assay for intermolecular crossing over between circular plasmids carrying variable amounts of homology. Screens of Escherichia coli mutants demonstrated that known recombination functions can only partially account for the observed recombination. Recombination rates increased three to four orders of magnitude as homology rose from 25 to 411 bp.
View Article and Find Full Text PDF