Background: Transient expression of proteins in mammalian cells is a key technique for many functional and structural studies of human and higher eukaryotic genes as well as for the production of recombinant protein therapeutics. Maximizing the expression efficiency to achieve a higher expression yield is desirable and may be even critical when, for instance, an expressed protein must be characterized at the single-cell level.
New Methods: Our goal was to develop a simple method by which protein expression yield in human embryonic kidney (HEK)-293 cells could be enhanced with a brief treatment of dimethyl sulfoxide (DMSO) solution.
Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases.
View Article and Find Full Text PDFAs auxiliary subunits, transmembrane AMPA receptor regulatory proteins (TARPs) are known to enhance macroscopic current amplitude and alter kinetic properties of AMPA receptors on slow time scale, such as desensitization rate. Whether TARPs affect the rate of AMPA channel opening and closing, however, remains elusive. Using a laser-pulse photolysis technique, we investigated the effect of γ-2 (stargazin, a type 1a TARP) and γ-4 (a type 1b TARP) on the channel-opening and channel-closing rate constants (i.
View Article and Find Full Text PDF