Staphylococcus aureus and Staphylococcus epidermidis are prominent bacterial pathogens of nosocomial infections. Both microorganisms colonize medical devices by forming adherent biofilms. Poly-β-D-(1→6)-N-acetyl-glucosamine (PNAG) is a surface polysaccharide antigen which was found on both S.
View Article and Find Full Text PDFEscherichia coli O148 is a nonencapsulated enterotoxigenic (ETEC) Gram negative bacterium that can cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome in humans. The surface-exposed O-specific polysaccharide (O-SP) of the lipopolysaccharide of this bacterium is considered both a virulence factor and a protective antigen. It is built up of the linear tetrasaccharide repeating unit [3)-α-L-Rhap-(1→2)-α-D-Glcp-(1→3)-α-D-GlcNAcp-(1→3)-α-L-Rhap-(1→] differing from that of the O-SP of Shigella dysenteriae type 1 (SD) only in that the latter contains a D-Galp residue in place of the glucose moiety of the former.
View Article and Find Full Text PDFBorrelia burgdorferi is the etiological agent for Lyme disease (LD), the most common vector borne disease in the United States. There is no human vaccine against LD currently available. Our approach to a vaccine is based on its surface-exposed glycolipids.
View Article and Find Full Text PDFPertussis is a highly contagious respiratory disease that is especially dangerous for infants and children. Despite mass vaccination, reported pertussis cases have increased in the United States and other parts of the world, probably because of increased awareness, improved diagnostic means, and waning vaccine-induced immunity among adolescents and adults. Licensed vaccines do not kill the organism directly; the addition of a component inducing bactericidal antibodies would improve vaccine efficacy.
View Article and Find Full Text PDFThere is no licensed vaccine for the prevention of shigellosis. Our approach to the development of a Shigella vaccines is based on inducing serum IgG antibodies to the O-specific polysaccharide (O-SP) domain of their lipopolysaccharides (LPS). We have shown that low molecular mass O-SP-core (O-SPC) fragments isolated from Shigella sonnei LPS conjugated to proteins induced significantly higher antibody levels in mice than the full length O-SP conjugates.
View Article and Find Full Text PDFShigellosis, an enteric disease, is on the World Health Organization's priority prevention list. In one study, the Shigella sonnei O-specific polysaccharide (O-SP)-protein conjugate showed 72% protection against disease in Israeli army recruits exposed to high rates (8-14%) of infection. The protection was related to vaccine-induced IgG anti-O-SP levels.
View Article and Find Full Text PDFBordetellae are Gram-negative bacilli causing respiratory tract infections of mammals and birds. Clinically important are B. pertussis, B.
View Article and Find Full Text PDFCurr Top Med Chem
March 2008
Synthetic advances made possible chemical assembly of complex oligosaccharide fragments of polysaccharide domains on the surface of human pathogenic bacteria. These oligosaccharides may be recognized by antibodies raised against high molecular weight, native, polysaccharides. In addition to their antigenicity, synthetic oligosaccharides can also function as haptens in their protein conjugates that can elicit not only oligo- but also polysaccharide-specific IgG antibodies in animal models and in humans.
View Article and Find Full Text PDFEndemic and epidemic shigellosis, an acute invasive disease of the lower intestines, afflicts millions of people worldwide with an estimated one million fatalities per annum at a low infectious dose. Our approach to vaccine development against Shigella is based on the hypothesis that serum IgG antibodies to the O-specific polysaccharide (O-SP) domains of the LPS of these organisms confer protection to infection. The synthetic oligosaccharides corresponding to the tetrasaccharide repeating unit of the O-SP of Shigella dysenteriae type 1 covalently linked to human serum albumin elicited O-SP-specific IgG in mice.
View Article and Find Full Text PDFCarbohydr Res
February 2007
A novel glycolipid was synthesized that corresponds to cholesteryl palmitoyl-galactopyranoside 1 found in the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. In order to fashion 1 in a conjugatable form, the palmitoyl residue was modified to include a terminal aldehydo moiety that anchored the glycolipid to aminooxypropylated serum albumin using oxime chemistry. The glycolipoprotein so obtained incorporates an average of 18 glycolipid moieties per albumin molecule.
View Article and Find Full Text PDFHexa- to tridecasaccharides corresponding to the O-specific polysaccharide (O-SP) of the Gram-negative bacterium Shigella dysenteriae type 1 were synthesized in solution phase. The syntheses utilized tetra-, octa-, and dodecasaccharide intermediates that represent one to three contiguous tetrasaccharide repeating units of the O-SP [Synlett2003, 743]. These compounds were glycosylated with mono-, di-, and trisaccharide trichloroacetamidates, which were synthesized in this study.
View Article and Find Full Text PDFThe bacterial cell-wall-associated teichoic acids contain predominantly D-ribitol residues interconnected by phosphodiester linkages. Because of their location, these antigens may be vaccine candidates as part of conjugate vaccines. Here, we describe the synthesis of extended oligomers of D-ribitol-1-phosphate linked to a spacer having an amino group at its terminus.
View Article and Find Full Text PDFA new, efficient, and mild protocol is presented for the coupling of saccharides to proteins. First, a heterobifunctional aminooxy-thiol linker is coupled to the bromoacylated protein to introduce aminooxy groups through thioether linkages. Condensation of the aminooxylated protein and aldehydo/keto-derivatized carbohydrates affords covalent saccharide-protein constructs.
View Article and Find Full Text PDFAlbumin conjugates of synthetic fragments of the capsular polysaccharide of the Gram-negative bacterium Neisseria meningitidis serogroup A were prepared. The fragments include monosaccharides 1 [alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)] and 2 [6-O-P(O)(O(-))(2)-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)], disaccharide 3 [alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)], and trisaccharide 4 [alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-[1-->O-P(O)(O(-))-->6]-alpha-D-ManpNAc-(1-->O)-(CH(2))(2)NH(2)]. Two monosaccharide blocks were employed as key intermediates.
View Article and Find Full Text PDFDiels-Alder-type cycloaddition of an electronically matched pair of saccharide-linked conjugated dienes and a dienophile-equipped protein gives neoglycoproteins at ambient temperature in pure water with a reaction half-life of approximately 2 h. Uncoupled saccharides can be recovered by diafiltration with complete conservation of the diene moiety, thus allowing their repeated use. The procedure described is the first for creating a carbon-carbon covalent bond in the bioconjugation step between a saccharide and a protein.
View Article and Find Full Text PDFSyntheses of a hexadecasaccharide and smaller fragments corresponding to one-four repeating units of the O-specific polysaccharide of Shigella dysenteriae type 1 are reported in a reactive aglycon-linked from. Two tetrasaccharide donor/acceptor repeating units were assembled from monosaccharide precursors in a stepwise fashion and used in a linear, iterative manner to construct the higher-membered saccharides using Schmidt's glycosylation technique that proved superior to others tested. Single-point attachment of the saccharides to human serum albumin, using a secondary heterobifunctional spacer, afforded a range of glycoconjugates for a detailed evaluation of their immunological characteristics.
View Article and Find Full Text PDFKojidextrins are biologically important oligosaccharides that are involved in many physiological processes including protein glycosylation and bacterial growth. As part of our project to explore the role kojidextrins may play in bacterial pathogenesis, here we report synthetic routes to kojibiose (54), -triose (58), -tetraose (64), and -pentaose (69) equipped with alpha-linked (hydrazinocarbonyl)pentyl aglycon, using linear and convergent strategies. In the search for a rapid convergent strategy for the construction of extended kojidextrins, four kojibiose donors (1-4) were synthesized that contain acyl- and ether-type protecting groups in various ratios.
View Article and Find Full Text PDF