Publications by authors named "Vinayak Narasimhan"

Augmenting contact lenses with sensing capabilities requires incorporating multiple functionalities within a diminutive device. Inspired by multifunctional biophotonic nanostructures of glasswing butterflies, a nanostructured scleral lens with enhanced optical, bactericidal, and sensing capabilities is reported. When used in conjunction with a smartphone-integrated Raman spectrometer, the feasibility of point-of-care applications is demonstrated.

View Article and Find Full Text PDF

The spontaneous phase separation of two or more polymers is a thermodynamic process that can take place in both biological and synthetic materials and which results in the structuring of the matter from the micro- to the nanoscale. For photonic applications, it allows forming quasi-periodic or disordered assemblies of light scatterers at high throughput and low cost. The wet process methods currently used to fabricate phase-separated nanostructures (PSNs) limit the design possibilities, which in turn hinders the deployment of PSNs in commercialized products.

View Article and Find Full Text PDF

Flexible surface-enhanced Raman scattering (SERS) has received attention as a means to move SERS-based broadband biosensing from bench to bedside. However, traditional flexible periodic nano-arrangements with sharp plasmonic resonances or their random counterparts with spatially varying uncontrollable enhancements are not reliable for practical broadband biosensing. Here, we report bioinspired quasi-(dis)ordered nanostructures presenting a broadband yet tunable application-specific SERS enhancement profile.

View Article and Find Full Text PDF

Enhancement of optical emission on plasmonic nanostructures is intrinsically limited by the distance between the emitter and nanostructure surface, owing to a tightly-confined and exponentially-decaying electromagnetic field. This fundamental limitation prevents efficient application of plasmonic fluorescence enhancement for diversely-sized molecular assemblies. We demonstrate a three-dimensionally-tapered gap plasmon nanocavity that overcomes this fundamental limitation through near-homogeneous yet powerful volumetric confinement of electromagnetic field inside an open-access nanotip.

View Article and Find Full Text PDF

Our understanding of ocular hemodynamics and its role in ophthalmic disease progression remains unclear due to the shortcomings of precise and on-demand biomedical sensing technologies. Here, we report high-resolution in vivo assessment of ocular hemodynamics using a Fabry-Pérot cavity-based micro-optical sensor and a portable optical detector. The designed optical system is capable of measuring both static intraocular pressure and dynamic ocular pulsation profiles in parallel.

View Article and Find Full Text PDF

Aluminum (Al)-based nanoantennae traditionally suffer from weak plasmonic performance in the visible range, necessitating the application of more expensive noble metal substrates for rapidly expanding biosensing opportunities. We introduce a metasurface comprising Al nanoantennae of nanodisks-in-cavities that generate hybrid multipolar lossless plasmonic modes to strongly enhance local electromagnetic fields and increase the coupled emitter's local density of states throughout the visible regime. This results in highly efficient electromagnetic field confinement in visible wavelengths by these nanoantennae, favoring real-world plasmonic applications of Al over other noble metals.

View Article and Find Full Text PDF

Recent studies on metal-insulator-metal-based plasmonic antennas have shown that emitters could couple with higher-order gap-plasmon modes in sub-10-nm gaps to overcome quenching. However, these gaps are often physically inaccessible for functionalization and are not scalably manufacturable. Here, using a simple biomimetic batch-fabrication, a plasmonic metasurface is created consisting of closely-coupled nanodisks and nanoholes in a metal-insulator-metal arrangement.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease, and its management focuses on monitoring and lowering a patient's glucose level to prevent further complications. By tracking the glucose-induced shift in the surface-enhanced Raman-scattering (SERS) emission of mercaptophenylboronic acid (MPBA), we have demonstrated fast and continuous glucose sensing in the physiologically relevant range from 0.1 to 30 mM and verified the underlying mechanism using numerical simulations.

View Article and Find Full Text PDF

We have demonstrated metal-on-silicon thermocouples with a noticeably high Seebeck coefficient and an excellent temperature-sensing resolution. Fabrication of the thermocouples involved only simple photolithography and metal-liftoff procedures on a silicon substrate. The experimentally measured Seebeck coefficient of our thermocouple was 9.

View Article and Find Full Text PDF

Numerous living organisms possess biophotonic nanostructures that provide colouration and other diverse functions for survival. While such structures have been actively studied and replicated in the laboratory, it remains unclear whether they can be used for biomedical applications. Here, we show a transparent photonic nanostructure inspired by the longtail glasswing butterfly (Chorinea faunus) and demonstrate its use in intraocular pressure (IOP) sensors in vivo.

View Article and Find Full Text PDF

Multifunctional black-silicon (b-Si) integrated on the surface of an implantable intraocular pressure sensor significantly improves sensor performance and reliability in six-month in vivo studies. The antireflective properties of b-Si triples the signal-to-noise ratio and increases the optical readout distance to a clinically viable 12 cm. Tissue growth and inflammation response on the sensor is suppressed demonstrating desirable anti-biofouling properties.

View Article and Find Full Text PDF

For many practical electrowetting-on-dielectric (EWOD) applications, the use of high-capacitance dielectric materials is critically demanded to induce a large surface tension modulation. Thin-film dielectric layers such as Parylene C, silicon dioxide (SiO2), and aluminum oxide (Al2O3) have been commonly used for EWOD. However, these dielectric materials are fabricated by conventional integrated circuit (IC) processes which are typically time-consuming and require complex and expensive laboratory setups such as high-vacuum facilities.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondq80npa3m8ghmgvrdobmd8in8h9fpmnn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once