Publications by authors named "Vinayak Bhat"

The accurate determination of the post-dilution concentration of biological buffers is essential for retaining the necessary properties and effectiveness of the buffer to maintain stable cellular environments and optimal conditions for biochemical reactions. In this work, we introduce a silicon-based impedance chip, which offers a rapid and reagent-free approach for monitoring the buffer concentrations after dilution with deionized (DI) water. The impedance of the impedance chip is measured, and the impedance data are modeled using a multiparameter equivalent circuit model.

View Article and Find Full Text PDF

Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic applications. OSC development, however, is often limited by trial-and-error design, with computational modeling approaches deployed to evaluate and screen candidates through a suite of molecular and materials descriptors that generally require hours to days of computational time to accumulate. Such bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC.

View Article and Find Full Text PDF

We present a novel and easy approach using a silicon-based impedance chip to determine the concentration of the given aqueous buffer solution. An accurate determination of the post-dilution concentration of the buffers is necessary for ensuring optimal buffer capacity, pH stability, and to assess solution reproducibility. In this study, we focused on phosphate buffer as the test liquid to achieve precise post-dilution concentration determinations.

View Article and Find Full Text PDF

Magnons, quanta of spin waves, are known to enable information processing with low power consumption at the nanoscale. So far, however, experimentally realized half-adders, wave-logic, and binary output operations are based on few µm-long spin waves and restricted to one spatial direction. Here, magnons with wavelengths λ down to 50 nm in ferrimagnetic Y Fe O below 2D lattices of periodic and aperiodic ferromagnetic nanopillars are explored.

View Article and Find Full Text PDF

While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations.

View Article and Find Full Text PDF

Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development.

View Article and Find Full Text PDF

Aperiodicity and un-conventional rotational symmetries allow quasicrystalline structures to exhibit unusual physical and functional properties. In magnetism, artificial ferromagnetic quasicrystals exhibited knee anomalies suggesting reprogrammable magnetic properties via non-stochastic switching. However, the decisive roles of short-range exchange and long-range dipolar interactions have not yet been clarified for optimized reconfigurable functionality.

View Article and Find Full Text PDF

As buzzwords like "big data," "machine learning," and "high-throughput" expand through chemistry, chemists need to consider more than ever their data storage, data management, and data accessibility, whether in their own laboratories or with the broader community. While it is commonplace for chemists to use spreadsheets for data storage and analysis, a move towards database architectures ensures that the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making this move has several challenges for those with limited-to-no knowledge of computer programming and databases.

View Article and Find Full Text PDF

Background/purpose: Conventional stents "cage" the coronary arteries, impairing vascular function and physiology. The DynamX Bioadaptor is a cobalt‑chromium platform with uncaging elements, designed to improve arterial pulsatility, vasomotion, compliance, and positive adaptive remodelling which may attenuate late clinical events associated with the caging of arteries through conventional stents. We present the first 24-month outcomes of this device.

View Article and Find Full Text PDF

Quasicrystals are aperiodically ordered structures with unconventional rotational symmetry. Their peculiar features have been explored in photonics to engineer bandgaps for light waves. Magnons (spin waves) are collective spin excitations in magnetically ordered materials enabling non-charge-based information transmission in nanoscale devices.

View Article and Find Full Text PDF

Materials design and discovery are often hampered by the slow pace and materials and human costs associated with Edisonian trial-and-error screening approaches. Recent advances in computational power, theoretical methods, and data science techniques, however, are being manifest in a convergence of these tools to enable in silico materials discovery. Here, we present the development and deployment of computational materials data and data analytic approaches for crystalline organic semiconductors.

View Article and Find Full Text PDF

Using two different types of impedance biochips (PS5 and BS5) with ring top electrodes, a distinct change of measured impedance has been detected after adding 1-5 µL (with dead or live Gram-positive JG-A12 cells to 20 µL DI water inside the ring top electrode. We relate observed change of measured impedance to change of membrane potential of JG-A12 cells. In contrast to impedance measurements, optical density (OD) measurements cannot be used to distinguish between dead and live cells.

View Article and Find Full Text PDF

A novel small signal equivalent circuit model is proposed in the inversion regime of metal/(ZnO, ZnMnO, and ZnCoO) semiconductor/SiN insulator/p-Si semiconductor (MSIS) structures to describe the distinctive nonlinear frequency dependent capacitance (C-F) and conductance (G-F) behaviour in the frequency range from 50 Hz to 1 MHz. We modelled the fully depleted ZnO thin films to extract the static dielectric constant (ε) of ZnO, ZnMnO, and ZnCoO. The extracted enhancement of static dielectric constant in magnetic n-type conducting ZnCoO (ε ≥ 13.

View Article and Find Full Text PDF

Background: Polymer-based bioresorbable scaffolds (PBBS) have been assessed for coronary revascularization with mixed outcomes. Few studies have targeted pediatric-specific scaffolds. We sought to assess safety, efficacy, and short-term performance of a dedicated drug-free PBBS pediatric scaffold compared to a standard low-profile bare metal stent (BMS) in central and peripheral arteries of weaned piglets.

View Article and Find Full Text PDF

The self-assembly of chiral organic chromophores is gaining huge significance due to the abundance of supramolecular chirality found in natural systems. We report an interdigitated molecular assembly involving axially chiral octabrominated perylenediimide (OBPDI) which transfers chiral information to achiral aromatic moieties. The crystalline two-component assemblies of OBPDI and electron-rich aromatic units were facilitated through π-hole⋅⋅⋅π donor-acceptor interactions, and the charge-transfer characteristics in the ground and excited states of the OBPDI cocrystals were established through spectroscopic and theoretical techniques.

View Article and Find Full Text PDF

A series of extended π-conjugated benzophenone analogs was synthesized through a facile Lewis-acid catalyzed Friedel-Crafts reaction in order to exploit the integral triplet state properties of benzophenone. Extending the π-conjugated plane of the phenyl ring of benzophenone allowed tuning of the excitation wavelength from the far-UV end (∼260 nm) to the visible spectrum (∼446 nm). Compared to benzophenone, significant red-shifts in the absorption (up to 450 nm in solution) with high photostability were observed for the synthesized benzophenone analogs.

View Article and Find Full Text PDF

Unraveling nanoscale spin structures has long been an important activity addressing various scientific interests, that are also readily adaptable to technological applications. This has invigorated the development of versatile nanoprobes suitable for imaging specimens under native conditions. Here we have demonstrated the resonant coherent diffraction of an artificial quasicrystal magnet with circularly polarized X-rays.

View Article and Find Full Text PDF

The introduction of the trialkylsilylethynyl group to the acene core is known to predominantly transform the herringbone structure of pentacene to a slip-stacked packing. However, herein, the occurrence of an unforeseen polymorph of 6,13-bis(trimethylsilylethynyl)pentacene (TMS-pentacene), with an atypical γ-herringbone packing arrangement, is reported. Intermolecular noncovalent interactions in the γ-herringbone polymorph are determined from Hirshfeld surface and quantum theory of atoms-in-molecules (QTAIM) analyses.

View Article and Find Full Text PDF

Objectives: This study sought to report the late multimodality imaging and clinical outcomes of the novel poly-l-lactic-acid-based DESolve novolimus-eluting bioresorbable coronary scaffold for the treatment of de novo coronary lesions.

Background: Bioresorbable scaffolds are an alternative to drug-eluting metallic stents and provide temporary vascular scaffolding, which potentially may allow vessel restoration and reduce the risk of future adverse events.

Methods: Overall, 126 patients were enrolled at 13 international sites between November 2011 and June 2012.

View Article and Find Full Text PDF

Objectives: This study sought to perform clinical and imaging assessments of the DESolve Bioresorbable Coronary Scaffold (BCS).

Background: BCS, which is drug eluting, may have potential advantages compared with conventional metallic drug-eluting stents. The DESolve system, designed to provide vessel support and neointimal suppression, combines a poly-l-lactic acid-based scaffold with the antiproliferative myolimus.

View Article and Find Full Text PDF

Aims: First generation DES have markedly reduced restenosis. However, there is a major interest in developing new DES with greater flexibility, radiopacity and safety profile. The Elixir Medical drug eluting stent is a novel DES that combines a chromium-cobalt platform with novolimus (an antiproliferative sirolimus-analogue drug) and a polymer from the methacrylate family.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: