Publications by authors named "Vinaya Sampath"

Undergraduate students often struggle to understand the basics of bacterial gene regulation, a key concept in microbiology. They find it hard to visualize the architecture of a bacterial operon or how the gene, RNA, and protein components interact with each other to regulate the operon. To better visualize the molecular interactions, students engaged in a role-playing exercise on bacterial gene regulation in the classroom.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the outer membrane protein TolC and its orthologs FtlC and SilC in the virulence of the pathogen responsible for tularemia, highlighting their involvement in multidrug efflux and immune response modulation.
  • It was found that TolC is crucial for altering macrophage responses during infection, while FtlC also plays a significant role in virulence, specifically through the intradermal infection route.
  • Overall, the research indicates that while TolC is essential for immune response modulation and virulence in a general sense, the contributions of each ortholog vary based on the type of infection route and strain involved.
View Article and Find Full Text PDF

Francisella tularensis is a highly virulent Gram-negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface.

View Article and Find Full Text PDF

The uppressor of CR ignaling proteins (Sts-1 and Sts-2) are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic lineages, including T lymphocytes. Mice lacking Sts expression are characterized by enhanced T cell responses. Additionally, a recent study demonstrated that mice are profoundly resistant to systemic infection by , with resistance characterized by enhanced survival, more rapid fungal clearance in key peripheral organs, and an altered inflammatory response.

View Article and Find Full Text PDF

Based on their sequences, the Saccharomyces cerevisiae Hpa2 and Hpa3 proteins are annotated as two closely related members of the Gcn5 acetyltransferase family. Here, we describe the biochemical characterization of Hpa2 and Hpa3 as bona fide acetyltransferases with different substrate specificities. Mutational and MALDI-TOF analyses showed that Hpa3 translation initiates primarily from Met-19 rather than the annotated start site, Met-1, with a minor product starting at Met-27.

View Article and Find Full Text PDF

Sir3, a component of the transcriptional silencing complex in the yeast Saccharomyces cerevisiae, has an N-terminal BAH domain that is crucial for the protein's silencing function. Previous work has shown that the N-terminal alanine residue of Sir3 (Ala2) and its acetylation play an important role in silencing. Here we show that the silencing defects of Sir3 Ala2 mutants can be suppressed by mutations in histones H3 and H4, specifically, by H3 D77N and H4 H75Y mutations.

View Article and Find Full Text PDF

Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation.

View Article and Find Full Text PDF

Rpb4 and Rpb7, are conserved subunits of RNA polymerase II that play important roles in stress responses such as growth at extreme temperatures, recovery from stationary phase, sporulation and pseudohyphal growth. Recent reports have shown that apart from stress response, these proteins also affect a multitude of processes including activated transcription, mRNA export, transcription coupled repair etc. We propose a model that integrates the multifarious roles of this sub-complex.

View Article and Find Full Text PDF

The subcomplex of Rpb4 and Rpb7 subunits of RNA pol II in Saccharomyces cerevisiae is known to be an important determinant of transcription under a variety of physiological stresses. In S.cerevisiae, RPB7 is essential for cell viability while rpb4 null strains are temperature sensitive at low and high temperatures.

View Article and Find Full Text PDF

Rpb4, the fourth largest subunit of RNA polymerase II in Saccharomyces cerevisiae, is required for many phenotypes, including growth at high and low temperatures, sporulation, pseudohyphal growth, activated transcription of a subset of genes, and efficient carbon and energy metabolism. We have used deletion analysis to delineate the domains of the protein involved in these multiple phenotypes. The scRpb4 protein is conserved at the N and C termini but possesses certain non-conserved regions in the central portion.

View Article and Find Full Text PDF