A 5-μM docking hit has been optimized to an extraordinarily potent (55 pM) non-nucleoside inhibitor of HIV reverse transcriptase. Use of free energy perturbation (FEP) calculations to predict relative free energies of binding aided the optimizations by identifying optimal substitution patterns for phenyl rings and a linker. The most potent resultant catechol diethers feature terminal uracil and cyanovinylphenyl groups.
View Article and Find Full Text PDFNon-nucleoside reverse transcriptase inhibitors (NNRTIs) that interfere with the replication of human immunodeficiency virus (HIV) are being pursued with guidance from molecular modeling including free-energy perturbation (FEP) calculations for protein-inhibitor binding affinities. The previously reported pyrimidinylphenylamine 1 and its chloro analogue 2 are potent anti-HIV agents; they inhibit replication of wild-type HIV-1 in infected human T-cells with EC(50) values of 2 and 10 nM, respectively. However, they show no activity against viral strains containing the Tyr181Cys (Y181C) mutation in HIV-RT.
View Article and Find Full Text PDFA protected cyclitol aglycon was tethered to an (N-arylsulfonyl)glucosamine donor by a methylene linker; the exclusively alpha-selective intramolecular glycosylation reaction was then initiated by electrophilic activation of the thioglycoside donor portion. Further transformations of the glycosylation product to give the M. tuberculosis detoxifier mycothiol and its oxidized congener, the disulfide mycothione, are detailed.
View Article and Find Full Text PDFDesign of non-nucleoside inhibitors of HIV-1 reverse transcriptase is being pursued with the assistance of free energy perturbation (FEP) calculations to predict relative free energies of binding. Extension of azole-containing inhibitors into an 'eastern' channel between Phe227 and Pro236 has led to the discovery of potent and structurally novel derivatives.
View Article and Find Full Text PDFTo discover non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) that are effective against both wild-type (WT) virus and variants that encode the clinically troublesome Tyr181Cys (Y181C) RT mutation, virtual screening by docking was carried out using three RT structures and more than 2 million commercially available compounds. Two of the structures are for WT-virus with different conformations of Tyr181, while the third structure incorporates the Y181C modification. Eventually nine compounds were purchased and assayed.
View Article and Find Full Text PDFEfficient optimization of an inactive 2-anilinyl-5-benzyloxadiazole core has been guided by free energy perturbation (FEP) calculations to provide potent non-nucleoside inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (NNRTIs). An FEP "chlorine scan" was performed to identify the most promising sites for substitution of aryl hydrogens. This yielded NNRTIs 8 and 10 with activities (EC50) of 820 and 310 nM for protection of human T-cells from infection by wild-type HIV-1.
View Article and Find Full Text PDFNon-nucleoside inhibitors of HIV-1 reverse transcriptase are being pursued through synthesis and assaying for anti-viral activity. Following computational analyses, the focus has been on the motif Het-NH-Ph-U, where Het is an aromatic heterocycle and U is an unsaturated, hydrophobic group. Previous investigations with Het=2-thiazoyl and 2-pyrimidinyl are extended here to triazinyl derivatives.
View Article and Find Full Text PDF[reaction: see text] Commercial 1,2:5,6-di-O-isopropylidene-alpha-d-allofuranose was converted to a protected bicyclic octosyl acid thioglycoside donor by a 10-step sequence that features an intramolecular ester enolate alkylation. Glycosylation of N-benzoyladenine and methyl uridine-5-carboxylate followed by deprotection gave the respective nucleosides "octosyl adenine" and octosyl acid A.
View Article and Find Full Text PDF[reaction: see text] A new synthetic procedure for aminohalogenation of olefins has been developed for the preparation of vicinal haloamine derivatives in high yields by using Cu, Mn, or V catalysts with p-toluenesulfonamide (TsNH(2)) and N-bromosuccinimide (NBS) as nitrogen and bromine sources, respectively. Unprecedented regio- and stereoselectivity (anti:syn > 99:1) toward the aminohalogenation process is shown for olefinic substrates as well as transition metal catalysts.
View Article and Find Full Text PDF