Publications by authors named "Vinay P Jani"

This study aims to extend earlier Krogh Cylinder Models of an oxygen profile by considering axial diffusion and analytically solving Fick's Law Partial Differential Equation with novel boundary conditions via the separation of variables. We next prospectively collected a total of 20 animals, which were randomly assigned to receive either fresh or two-week-old stored red blood cell (RBC) transfusions and PQM oxygen data were measured acutely (90 min) or chronically (24 h). Transfusion effects were evaluated in vivo using intravital microscopy of the dorsal skinfold window chamber in Golden Syrian Hamsters.

View Article and Find Full Text PDF

Cerebral malaria (CM) is a severe manifestation of malaria that commonly occurs in children and is hallmarked by neurologic symptoms and significant Plasmodium falciparum parasitemia. It is currently hypothesized that cerebral hypoperfusion from impaired microvascular oxygen transport secondary to parasitic occlusion of the microvasculature is responsible for cerebral ischemia and thus disease severity. Animal models to study CM, are known as experimental cerebral malaria (ECM), and include the C57BL/6J infected with Plasmodium berghei ANKA (PbA), which is ECM-susceptible, and BALB/c infected with PbA, which is ECM-resistant.

View Article and Find Full Text PDF

Direct measurement of cardiac pressure-volume (PV) relationships is the gold standard for assessment of ventricular hemodynamics, but few innovations have been made to "multi-beat" PV analysis beyond traditional signal processing. The Prony method solves the signal recovery problem with a series of dampened exponentials or sinusoids. It achieves this by extracting the amplitude, frequency, dampening, and phase of each component.

View Article and Find Full Text PDF

Infection with COVID-19 has resulted in over 276,000 deaths in the United States and over 1.5 million deaths globally, with upwards of 15% of patients requiring hospitalization. Severe COVID-19 infection is, in essence, a microvascular disease.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a condition hallmarked by high permeability pulmonary edema and hypoxemic respiratory failure and is associated with high mortality. Current treatment protocols rely on improving O delivery, decreasing O consumption, and treating the underlying cause of the initial insult. In this study, we used a small rodent model of ARDS, where we induced lung injury with inhalation of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Extracorporeal circulation (ECC) procedures, such as cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO), take over the function of one or more organs, providing clinicians time to treat underlying pathophysiological conditions. ECMO and CPB carry significant mortality rates for patients, despite prior decades of research focused on the resulting failure of critical organs. Since the focus of these procedures is to support blood flow and provide oxygen-rich blood to tissues, a shift in research toward the effects of ECMO and CPB on the microcirculation is warranted.

View Article and Find Full Text PDF

Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability.

View Article and Find Full Text PDF

Microvascular fluid exchange is primarily dependent on Starling forces and both the active and passive myogenic response of arterioles and post-capillary venules. Arterioles are classically considered resistance vessels, while venules are considered capacitance vessels with high distensibility and low tonic sympathetic stimulation at rest. However, few studies have investigated the effects of modulating interstitial hydrostatic pressure, particularly in the context of hemorrhagic shock.

View Article and Find Full Text PDF

The mechanical properties and deformability of Red Blood Cells (RBCs) are important determinants of blood rheology and microvascular hemodynamics. The objective of this study is to quantify the mechanical properties and wall shear stress experienced by the RBC membrane during capillary plug flow utilizing high speed video recording from intravital microscopy, biomechanical modeling, and computational methods. Capillaries were imaged in the rat cremaster muscle pre- and post-RBC transfusion of stored RBCs for 2-weeks.

View Article and Find Full Text PDF