Publications by authors named "Vinay K Godena"

Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, (), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons resulting in a catastrophic loss of motor function. Current therapies are severely limited owing to a poor mechanistic understanding of the pathobiology. Mutations in a large number of genes have now been linked to ALS, including SOD1, TARDBP (TDP-43), FUS and C9orf72.

View Article and Find Full Text PDF

Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1-2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403.

View Article and Find Full Text PDF

Mutations in VPS35 (PARK17) cause autosomal dominant, late onset Parkinson's disease (PD). VPS35 forms a core component of the retromer complex that mediates the retrieval of membrane proteins from endosomes back to either the Golgi or plasma membrane. While aberrant endosomal protein sorting has been linked to several neurodegenerative diseases, the mechanisms by which VPS35 mutations and retromer function contribute to PD pathogenesis are not clear.

View Article and Find Full Text PDF
Article Synopsis
  • LRRK2 mutations are the leading genetic cause of Parkinson's disease and are linked to issues with axonal transport due to their association with microtubules.
  • Pathogenic mutations (R1441C, Y1699C) inhibit axonal transport in neurons and Drosophila, leading to locomotor problems.
  • Increasing microtubule acetylation through specific inhibitors can counteract the negative effects of mutant LRRK2 and improve both axonal transport and locomotion in affected models.
View Article and Find Full Text PDF

Genetic analysis of Parkinson disease (PD) has identified several genes whose mutation causes inherited parkinsonism, as well as risk loci for sporadic PD. PTEN-induced kinase 1 (PINK1) and parkin, linked to autosomal recessive PD, act in a common genetic pathway regulating the autophagic degradation of mitochondria, termed mitophagy. We undertook a genome-wide RNAi screen as an unbiased approach to identify genes regulating the PINK1/Parkin pathway.

View Article and Find Full Text PDF

TDP-43 is an evolutionarily conserved RNA binding protein recently associated with the pathogenesis of different neurological diseases. At the moment, neither its physiological role in vivo nor the mechanisms that may lead to neurodegeneration are well known. Previously, we have shown that TDP-43 mutant flies presented locomotive alterations and structural defects at the neuromuscular junctions.

View Article and Find Full Text PDF

Pathological modifications in the highly conserved and ubiquitously expressed heterogeneous ribonucleoprotein TDP-43 were recently associated to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), a late-onset disorder that affects predominantly motoneurons [Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF