The glucocorticoid receptor (GR) is an important transcription factor and drug target linked to a variety of biological functions and diseases. It is one of the most stringent physiological clients of the Hsp90/Hsp70/Hsp40 chaperone system. In this study, we used single-molecule force spectroscopy by optical tweezers to observe the interaction of the GR’s ligand-binding domain (GR-LBD) with the Hsp70/Hsp40 chaperone system (Hsp70/40).
View Article and Find Full Text PDFFolding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90.
View Article and Find Full Text PDFIn the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70.
View Article and Find Full Text PDFHsp90 is a molecular chaperone that interacts with a specific set of client proteins and assists their folding. The underlying molecular mechanisms, involving dynamic transitions between open and closed conformations, are still enigmatic. Combining nuclear magnetic resonance, small-angle x-ray scattering, and biochemical experiments, we have identified a key intermediate state of Hsp90 induced by adenosine triphosphate (ATP) binding, in which rotation of the Hsp90 N-terminal domain (NTD) yields a domain arrangement poised for closing.
View Article and Find Full Text PDFThe small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling.
View Article and Find Full Text PDFp53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
November 2019
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted.
View Article and Find Full Text PDFDespite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated.
View Article and Find Full Text PDFDespite their prevalence in biological systems, information about the folding pathways of large and multidomain proteins is meager, as they often unfold irreversibly under in vitro conditions which make their folding studies difficult or even impossible. The folding mechanism of a large (82 kDa) and multidomain protein Malate synthase G (MSG) has been demonstrated in the present study using intrinsic tryptophan fluorescence, enzymatic activity, and extrinsic fluorophore ANS as probes for monitoring the refolding process. Refolding of MSG is found to occur in three kinetic phases.
View Article and Find Full Text PDF