Proc Natl Acad Sci U S A
October 2018
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells, found within the islets of Langerhans in the pancreas, are destroyed by islet-infiltrating T cells. Identifying the antigenic targets of beta-cell reactive T cells is critical to gain insight into the pathogenesis of T1D and develop antigen-specific immunotherapies. Several lines of evidence indicate that insulin is an important target of T cells in T1D.
View Article and Find Full Text PDFBiol Blood Marrow Transplant
November 2016
We previously described successful hematopoietic stem cell engraftment across MHC barriers in miniature swine without graft-versus-host disease (GVHD) using novel reduced-intensity conditioning regimens consisting of partial transient recipient T cell-depletion, thymic or low-dose total body irradiation, and a short course of cyclosporine A. Here we report that stable chimeric animals generated with these protocols are strongly resistant to donor leukocyte infusion (DLI)-mediated GVH effects. Of 33 total DLIs in tolerant chimeras at clinical doses, 21 failed to induce conversion to full donor hematopoietic chimerism or cause GVHD.
View Article and Find Full Text PDFType 1 diabetes (T1D) develops when insulin-secreting β-cells, found in the pancreatic islets of Langerhans, are destroyed by infiltrating T cells. How human T cells recognize β-cell-derived antigens remains unclear. Genetic studies have shown that HLA and insulin alleles are the most strongly associated with risk of T1D.
View Article and Find Full Text PDFJ Am Assoc Lab Anim Sci
January 2013
Leukapheresis is a common procedure for hematopoietic cell transplantation in adults. The main challenge in applying this procedure to human infants and small monkeys is the large extracorporeal blood volume (165 mL on average) necessary for priming the apheresis machine. This volume represents greater than 50% of the total circulating blood volume of a human neonate or small monkey.
View Article and Find Full Text PDFA 3-mo-old, 12-kg, intact, miniature pig presented with severe neurologic signs on day 8 after hematopoietic cell transplantation. This pig had received an immunosuppressive regimen before transplantation that included an antiCD3 immunotoxin for T-cell depletion, 100 cGy of total-body irradiation, and cyclosporine for 45 d. The pig began exhibiting erythematous lesions on posttransplantation day 7.
View Article and Find Full Text PDFBiol Blood Marrow Transplant
November 2012
Loss of chimerism is an undesirable outcome of allogeneic hematopoietic cell transplantation (HCT) after reduced-intensity conditioning. Understanding the nature of cellular and humoral immune responses to HCT after graft loss could lead to improved retransplantation strategies. We investigated the immunologic responses after graft loss in miniature swine recipients of haploidentical HCT that received reduced-intensity conditioning.
View Article and Find Full Text PDFDiphtheria toxin (DT)-based anti-CD3 immunotoxins have clinical relevance in numerous applications including autoimmune disease therapies and organ transplantation tolerance protocols. Pre-existing anti-DT antibodies acquired either by vaccination against diphtheria toxin or infections with C. diphtheriae may interfere or inhibit the function of these anti-CD3 immunotoxins.
View Article and Find Full Text PDFYeast Pichia pastoris has been widely utilized to express heterologous recombinant proteins. P. pastoris expressed recombinant porcine interleukin 3 (IL3) has been used for porcine stem cell mobilization in allo-hematopoietic cell transplantation models and pig-to-primate xeno-hematopoietic cell transplantation models in our lab for many years.
View Article and Find Full Text PDFThe potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNA(Met) represented a polymorphism; however, 9035T>C conversion in the ATP6 gene was responsible for a defective F(0)-ATPase. Accordingly, mutant cybrids had a reduced oligomycin-sensitive ATP hydrolyzing activity.
View Article and Find Full Text PDF