Publications by authors named "Vimbai Chikwana"

Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on glycogen storage diseases (GSDs) characterized by excessive glycogen accumulation, suggesting that reducing this accumulation could be a viable treatment method.
  • Researchers identified a first-in-class inhibitor for a key enzyme, glycogen synthase (GS), which plays a significant role in glycogen production, and characterized it using advanced techniques like fluorescence polarization and X-ray crystallography.
  • They further developed around 500 analogs based on this inhibitor, ultimately discovering a more potent compound that significantly inhibits human GS, showing promise for drug development in treating GSDs linked to glycogen overaccumulation.
View Article and Find Full Text PDF

Cry6Aa1 is a () toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other toxins. Typical three-domain toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 μg/ml range.

View Article and Find Full Text PDF

Background: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage.

View Article and Find Full Text PDF

The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase.

View Article and Find Full Text PDF

Glycogen is a glucose polymer that contains minor amounts of covalently attached phosphate. Hyperphosphorylation is deleterious to glycogen structure and can lead to Lafora disease. Recently, it was demonstrated that glycogen synthase catalyzes glucose-phosphate transfer in addition to its characteristic glucose transfer reaction.

View Article and Find Full Text PDF

We have successfully expressed and purified active human glycogen synthase-1 (hGYS1). Successful production of the recombinant hGYS1 protein was achieved by co-expression of hGYS1 and rabbit glycogenin (rGYG1) using the MultiBac baculovirus expression system (BEVS). Functional measurements of activity ratios of hGYS1 in the absence and presence of glucose-6-phosphate and treatment with phosphatase indicate that the expressed protein is heavily phosphorylated.

View Article and Find Full Text PDF

The enzyme QueF catalyzes the reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ(0)) to 7-aminomethyl-7-deazaguanine (preQ(1)), the only nitrile reduction reaction known in biology. We describe here two crystal structures of Bacillus subtilis QueF, one of the wild-type enzyme in complex with the substrate preQ(0), trapped as a covalent thioimide, a putative intermediate in the reaction, and the second of the C55A mutant in complex with the substrate preQ(0) bound noncovalently. The QueF enzyme forms an asymmetric tunnel-fold homodecamer of two head-to-head facing pentameric subunits, harboring 10 active sites at the intersubunit interfaces.

View Article and Find Full Text PDF

Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site.

View Article and Find Full Text PDF

Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T.

View Article and Find Full Text PDF

The presence of the 7-deazaguanosine derivative archaeosine (G(+)) at position 15 in tRNA is one of the diagnostic molecular characteristics of the Archaea. The biosynthesis of this modified nucleoside is especially complex, involving the initial production of 7-cyano-7-deazaguanine (preQ(0)), an advanced precursor that is produced in a tRNA-independent portion of the biosynthesis, followed by its insertion into the tRNA by the enzyme tRNA-guanine transglycosylase (arcTGT), which replaces the target guanine base yielding preQ(0)-tRNA. The enzymes responsible for the biosynthesis of preQ(0) were recently identified, but the enzyme(s) catalyzing the conversion of preQ(0)-tRNA to G(+)-tRNA have remained elusive.

View Article and Find Full Text PDF