Increasing cancer drug chemo-resistance, especially in the treatment of breast and lung cancers, alarms the immediate need of newer and effective anticancer drugs. Until now, chemotherapeutics based on metal complexes are considered the most effective treatment modality. In the present study, we have evaluated the cytotoxic effect of two cobalt (III) Schiff base complexes based on the leads from complex combinatorial chemistry.
View Article and Find Full Text PDFCobalt (III) Schiff base complexes are of attraction in the context of their potential application in cancer therapy. The aim of this study has been to find the mechanism of action of cobalt (III) Schiff base complexes 1 and 2, the synthesis and characterization of which have already been reported, in inhibiting growth of human breast cancer cell MCF-7 and lung cancer cell A549. The already proclaimed anti-proliferative effect of the cobalt complexes was ascertained using MTT cytotoxicity assay.
View Article and Find Full Text PDFHeavy metal pollution in the water bodies causes a serious threat to all living beings. Extended exposure of heavy metals such as nickel (Ni) ions causes cancer. Henceforth, the current study investigated the removal of Ni ions from the electroplating effluent using nanocomposites namely, Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) in the presence of various factors such as contact time, pH, agitation speed and sorbent dosage.
View Article and Find Full Text PDFUrinary tract infections are second most important diseases worldwide due to the increased amount of antibiotic resistant microbes. Among the Gram negative bacteria, is the dominant biofilm producer in urinary tract infections next to . Biofilm is a process that produced self-matrix of more virulence pathogens on colloidal surfaces.
View Article and Find Full Text PDFDissolved organic matter (DOM) especially anthropogenic compounds in sewage systems affects their ultimate fate in the environment which is challenging to ascertain the heterogenic nature of the compound and causes co-occurring effects in most aquatic samples. So, our study have focused on current approaches to the chemical and structural characterization of DOM with the detailed classification of individual compounds such as the molecular levels of volatile organic, inorganic materials, drugs and endocrine disrupting compounds. Analytical techniques for example high performance gas chromatography-mass spectrometry (GCMS) with high-resolution liquid chromatography (HR-LCMS), X-ray diffraction (XRD) and three-dimensional fluorescence excitation emission matrix (3D-EEM) has resulted in advancing the parametric studies.
View Article and Find Full Text PDFOn considering the critical issues in attaining stringent water quality standards and not creating any environmental impacts, we focused for the first time the economically feasible, emerging technology known as Self-assembly flocculating (Saf process). In which, the study investigated the applicability of bioflocculant (a biopolymer-self-assembly in nature) act as a surrogates on relying the removal of broad spectrum of substances under optimized conditions (Dosage: 90 mg/L; pH: 7; CaCl). On using different techniques, the results have proved in removing the organic matter such as pharmaceuticals (Gentamycin, Cholecalciferol, Fluvoxamine, 3-OH Desogestrel, and Pheniramine), endocrine disturbing compounds [Phthalic acid, Benzene, 1, 2, 4 -Trimethoxy-5-(1-Propenyl)-, Benzene, 1, 2-Dimethoxy-4-(2-Propenyl)-, 1, 2-Benzenedicarboxylic Acid, 3-Cyclohexen-1-ol], fluorescent components (Polysaccharide like material), and others.
View Article and Find Full Text PDFBioflocculant has been recently exploited in various research activities. In this research, we report for the first time that a novel bioflocculant can self-assemble into nanoparticles with an irregular structure in solution. Bioflocculant has been developed from novel consortium encompassing Enterococcus faecalis, Proteus mirabilis, Lysini bacillus sp.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2019
Improved therapeutic effects can be achieved by the delivery of combination of drugs through multifunctional cell targeted nanocarrier systems. The present investigation reports the preparation of Poly (D,L-lactic-co-glycolic acid) (PLGA) nanospheres loaded with the novel combination such as Rutin (R) and Benzamide (B) as drugs using water-oil-water (w/o/w) emulsion method. Dual drug loaded PLGA nanospheres (R/B@PLGA) were stabilized by poly (vinyl alcohol) (PVA) coating and characterized in terms of morphology, size, surface charge, and structural chemistry by Scanning electron microscopy (SEM), Dynamic light scattering (DLS), Zeta potential analysis, UV-vis and Fourier transform infrared (FT-IR) spectroscopy.
View Article and Find Full Text PDFEmergence of antibiotic resistant bacteria has necessitated the drive to explore competent antimicrobial agents or to develop novel formulations to treat infections including Aeromonas hydrophila. The present study investigates the synergistic antibacterial effects of citrus flavonoid rutin and florfenicol (FF) against A. hydrophila in vitro and in vivo.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2015
Currently bioactive principles of plants and their nanoproducts have been extensively studied in agriculture and medicine. In this study Couroupita guianensis Aubl. leaf and fruit extracts were selected for rapid and cost-effective synthesis of silver nanoparticles (leaf-LAgNPs and fruit-FAgNPs).
View Article and Find Full Text PDF