Deficiency or excess of certain trace elements has been considered as risk factor for prostate cancer. This study was aimed to detect differential changes and mutual correlations of selected trace elements in prostate cancer tissue versus benign prostatic hyperplasia tissue. Zinc, copper, iron, calcium and selenium were analysed in histologically proven 15 prostate cancer tissues and 15 benign prostatic hyperplasia tissues using atomic absorption spectrophotometer.
View Article and Find Full Text PDFBackground: Testosterone, a primary androgen in males, is converted into its most active form, dihydrotestosterone (DHT), by 5α-reductase type 2 (encoded by the SRD5A2 gene) in the prostate. DHT is necessary for prostatic growth and has five times higher binding affinity than testosterone for androgen receptors. We hypothesized that polymorphic variations in the SRD5A2 gene may affect the risk of benign prostatic hyperplasia and prostate cancer.
View Article and Find Full Text PDFBackground: Benign prostatic hyperplasia (BPH) is an age related non-malignant disease diagnosed as lower urinary tract symptoms and prostatic enlargement. Null genotypes in drug detoxification glutathione-S-transferase genes/enzymes, such as GSTT1 and GSTM1 have been reported to increase risk of several cancers including prostate. Meta-analysis on PC also suggested significant impact of GSTM1 null genotype but not that of GSTT1; however, BPH data have not been subjected to meta-analysis.
View Article and Find Full Text PDFBackground: Oral carcinogenesis is a complex process affected by genetic as well as environmental factors. CYP2E1 gene is involved in metabolism of number of compounds and carcinogens. Its normal functioning is required for homeostasis of free radical.
View Article and Find Full Text PDF