In a bushfire burning of plant material generates volatile phenolics that may be absorbed by berries and leaves of grapes in nearby vineyards. In grapes these phenolics form glycoconjugates and the undesirable sensory attributes of smoke-exposed grapes only develop post-fermentation in the wine making process, when the free phenolics are released. To reduce the financial losses from producing smoke-tainted wines, phenolic glycosides associated with smoke-taint in grapes are currently monitored in analytical laboratories.
View Article and Find Full Text PDFPhytohormones that trigger or repress flower meristem development in apple buds are thought to be locally emitted from adjacent plant tissues, including leaves and fruitlets. The presence of fruitlets is known to inhibit adjacent buds from forming flowers and thus fruits. The resulting absence of fruitlets the following season restores flower-promoting signalling to the new buds.
View Article and Find Full Text PDFBackground: Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities.
View Article and Find Full Text PDFThe triggers of biennial bearing are thought to coincide with embryonic development in apple and occurs within the first 70 days after full bloom (DAFB). Strong evidence suggests hormonal signals are perceived by vegetative apple spur buds to induce flowering. The hormonal response is typically referred to as the floral induction (FI) phase in bud meristem development.
View Article and Find Full Text PDFBread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines.
View Article and Find Full Text PDFThe ergot alkaloid ergotamine is produced by Claviceps purpurea, a parasitic fungus that commonly infects crops and pastures of high agricultural and economic importance. In humans and livestock, symptoms of ergotism include necrosis and gangrene, high blood pressure, heart rate, thermoregulatory dysfunction and hallucinations. However, ergotamine is also used in pharmaceutical applications to treat migraines and stop post-partum hemorrhage.
View Article and Find Full Text PDFVolatile phenols (VPs) derived from smoke-exposed grapes are known to confer a smoky flavor to wine. Current methods for determination of VPs in grape berries either involve complex sample purification/derivatization steps or employ two analytical platforms for free and bound VP fractions. We report here a simple gas chromatography-tandem mass spectrometry (GC-MS/MS) method for quantification of both free and bound VPs in grapes, based on optimized (1) GC-MS/MS parameters, (2) an analyte extraction procedure, and (3) phenol glycoside hydrolysis conditions.
View Article and Find Full Text PDFThe complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate.
View Article and Find Full Text PDFCarbon dioxide supercritical fluid extraction (CO SFE) is a clean and cost-effective method of extracting cannabinoids from cannabis. Using design of experiment methodologies an optimised protocol for extraction of medicinal cannabis bud material (population of mixed plants, combined THC:CBD approximately 1:1.5) was developed at a scale of one kg per extraction.
View Article and Find Full Text PDFEarlier this year we published a method article aimed at optimising protein extraction from mature buds of medicinal cannabis for trypsin-based shotgun proteomics (Vincent, D., et al. , , 659).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2019
The social push for the therapeutic use of cannabis extracts has increased significantly over recent years. Cannabis is being used for treatment for conditions such as epilepsy, cancer and pain management. There are a range of medicinal cannabis products available, but the use of cannabis resin obtained by super critical fluid extraction, often diluted in oil, is becoming increasingly more prominent.
View Article and Find Full Text PDFThe most potent of the indole diterpenes, lolitrem B, is found in perennial ryegrass ( L.) infected with the endophyte var. (also termed TG-1).
View Article and Find Full Text PDFThe suppression of soilborne crop pathogens such as Rhizoctonia solani AG8 may offer a sustainable and enduring method for disease control, though soils with these properties are difficult to identify. In this study, we analysed the soil metabolic profiles of suppressive and non-suppressive soils over 2 years of cereal production. We collected bulk and rhizosphere soil at different cropping stages and subjected soil extracts to liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (H NMR) analyses.
View Article and Find Full Text PDFThree acid- and alkaline-catalysed transesterification methods were compared with the aim to validate a simple yet reliable protocol for fatty acid (FA) profiling of milk fat. While both the acid- and alkaline-catalysed methods were able to convert completely triglycerides and phospholipids into fatty acid methyl esters (FAMEs), the acid catalyst caused significant degradation of conjugated linoleic acid C18:2c9t11 at high temperature. Although a milder temperature can mitigate this negative impact, a long reaction time (2 h) is required to achieve full methylation.
View Article and Find Full Text PDFCow's milk is an important source of proteins in human nutrition. On average, cow's milk contains 3.5% protein.
View Article and Find Full Text PDFMilk is a complex fluid whose proteome displays a diverse set of proteins of high abundance such as caseins and medium to low abundance whey proteins such as ß-lactoglobulin, lactoferrin, immunoglobulins, glycoproteins, peptide hormones, and enzymes. A sample preparation method that enables high reproducibility and throughput is key in reliably identifying proteins present or proteins responding to conditions such as a diet, health or genetics. Using skim milk samples from Jersey and Holstein-Friesian cows, we compared three extraction procedures which have not previously been applied to samples of cows' milk.
View Article and Find Full Text PDFThe present study was designed to analyse soils by different methodologies to determine the range of traits that could be investigated for the study of environmental soil samples. Proton nuclear magnetic resonance spectroscopy ((1) H NMR) was employed for metametabolomic analysis of soils from agricultural systems (managed) or from soils in a native state (remnant). The metabolomic methodologies employed (grinding and extraction with sonication) are capable of breaking up cell walls and so enabled characterisation of both extracellular and intracellular components of soil.
View Article and Find Full Text PDFSeveral fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectiveness of 1H NMR metabolomics to generate comparable data sets from environmentally derived samples. It focuses on laboratory practice that follows sample collection and metabolite extraction, specifically the final stages of sample preparation, NMR data collection (500, 600, and 800 MHz), data processing, and multivariate analysis.
View Article and Find Full Text PDF