Background: We focus on Haldane's familial selection in monogamous families in a diploid population, where the survival probability of each sibling is determined by altruistic food sharing with its siblings during starvation. An autosomal recessive-dominant or intermediate allele pair uniquely determines the altruistic or selfish behavior, which are coded by homozygotes. We focus on the case when additive cost and benefit functions determine the survival probability of each full sibling.
View Article and Find Full Text PDFUsing a recursion model with real parameters of Nabis pseudoferus, we show that its filial cannibalism is an optimal foraging strategy for life reproductive success, but it is not an evolutionarily optimal foraging strategy, since it cannot maximize the descendant's number at the end of the reproductive season. Cannibalism is evolutionarily rational, when the number of newborn offspring produced from the cannibalized offspring can compensate the following two effects: (a) The cannibalistic lineage wastes time, since the individuals hatched from eggs produced by cannibalism start to reproduce later. (b) Cannibalism eliminates not only one offspring, but also all potential descendants from the cannibalized offspring during the rest of reproductive season.
View Article and Find Full Text PDFThe symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy.
View Article and Find Full Text PDFThe moral rule "Risk your life to save your family members" is, at the same time, a biological phenomenon. The prominent population geneticist, J.B.
View Article and Find Full Text PDFKleptoparasitism can be considered as a game theoretical problem and a foraging tactic at the same time, so the aim of this paper is to combine the basic ideas of two research lines: evolutionary game theory and optimal foraging theory. To unify these theories, firstly, we take into account the fact that kleptoparasitism between foragers has two consequences: the interaction takes time and affects the net energy intake of both contestants. This phenomenon is modeled by a matrix game under time constraints.
View Article and Find Full Text PDFBackground: For the understanding of human nature, the evolutionary roots of human moral behaviour are a key precondition. Our question is as follows: Can the altruistic moral rule "Risk your life to save your family members, if you want them to save your life" be evolutionary stable? There are three research approaches to investigate this problem: kin selection, group selection and population genetics modelling. The present study is strictly based on the last approach.
View Article and Find Full Text PDFParent-offspring communication remains an unresolved challenge for biologist. The difficulty of the challenge comes from the fact that it is a multifaceted problem with connections to life-history evolution, parent-offspring conflict, kin selection and signalling. Previous efforts mainly focused on modelling resource allocation at the expense of the dynamic interaction during a reproductive season.
View Article and Find Full Text PDFConsider and infinitely large asexual population without mutations and direct interactions. The activities of an individual determine the fecundity and the survival probability of individuals, moreover each activity takes time. We view this population model as a simple combination of life history and optimal foraging models.
View Article and Find Full Text PDFGame theory focuses on payoffs and typically ignores time constraints that play an important role in evolutionary processes where the repetition of games can depend on the strategies, too. We introduce a matrix game under time constraints, where each pairwise interaction has two consequences: both players receive a payoff and they cannot play the next game for a specified time duration. Thus our model is defined by two matrices: a payoff matrix and an average time duration matrix.
View Article and Find Full Text PDFIn this paper, we study the egalitarianism-game in multilevel selection situation. The individuals form reproductive groups. In each group, an egalitarianism-game determines the number of juveniles of different phenotypes (spiteful, envious, neutral and donator).
View Article and Find Full Text PDF