Publications by authors named "Villo Bernad"

Waterlogging is expected to become a more prominent yield restricting stress for barley as rainfall frequency is increasing in many regions due to climate change. The duration of waterlogging events in the field is highly variable throughout the season, and this variation is also observed in experimental waterlogging studies. Such variety of protocols make intricate physiological responses challenging to assess and quantify.

View Article and Find Full Text PDF

In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry.

View Article and Find Full Text PDF

Farmers and breeders aim to improve crop responses to abiotic stresses and secure yield under adverse environmental conditions. To achieve this goal and select the most resilient genotypes, plant breeders and researchers rely on phenotyping to quantify crop responses to abiotic stress. Recent advances in imaging technologies allow researchers to collect physiological data non-destructively and throughout time, making it possible to dissect complex plant responses into quantifiable traits.

View Article and Find Full Text PDF

Yield losses to waterlogging are expected to become an increasingly costly and frequent issue in some regions of the world. Despite the extensive work that has been carried out examining the molecular and physiological responses to waterlogging, phenotyping for waterlogging tolerance has proven difficult. This difficulty is largely due to the high variability of waterlogging conditions such as duration, temperature, soil type, and growth stage of the crop.

View Article and Find Full Text PDF