Publications by authors named "Villiam Dallolio"

Background: Cranioplasty is a well-known procedure, and autologous graft bone is usually considered the best choice in this procedure, but it cannot be used in conditions such as bone-infiltrating tumors, spheno-orbital en plaque meningiomas, and bone infections. Polymethylmethacrylate (PMMA) offers great possibility of intraoperative adaption. We describe a case of 1-step cranioplasty performed in a patient with a meningeal fibrosarcoma using a custom-made silicon mold.

View Article and Find Full Text PDF

OBJECTIVE Cranioplasty is a reconstructive procedure used to restore skull anatomy and repair skull defects. Optimal skull reconstruction is a challenge for neurosurgeons, and the strategy used to achieve the best result remains a topic of debate, especially in pediatric patients for whom the continuing skull growth makes the choice of material more difficult. When the native bone flap, which is universally accepted as the preferred option in pediatric patients, is unavailable, the authors' choice of prosthetic material is a polymethylmethacrylate (PMMA) implant designed using a custom-made technique.

View Article and Find Full Text PDF

The present work proposes a new suturing procedure based on self-accommodating suture points. Each suture point is made of a commercial NiTi wire hot-shaped in a single loop ring; a standard suture needle is then fixed at one end of the NiTi suture. According to this simple geometry, several NiTi suture stitches have been prepared and tested by tensile test to verify the closing force in comparison to that of commercial sutures.

View Article and Find Full Text PDF

In this work, a new NiTi shape memory alloy (SMA) bone fixator is proposed. Thanks to the shape memory effect, this device does not need any external tool for the fixation, as the anchorage is obtained only by the self-accommodation of the clip during the parent transformation. Calorimetry and thermo-mechanical tests were used to evaluate the phase transformation temperatures and to estimate the forces generated both during the fixing surgical procedure and after the surgical operation.

View Article and Find Full Text PDF

The biomechanical compatibility of an interspinous device, used for the "dynamic stabilization" of a diseased spinal motion segment, was investigated. The behaviour of an implant made of titanium based alloy (Ti6Al4V) and that of an implant made of a super-elastic alloy (Ni-Ti) have been compared. The assessment of the biomechanical compatibility was achieved by means of the finite element method, in which suitable constitutive laws have been adopted for the annulus fibrosus and for the metal alloys.

View Article and Find Full Text PDF