Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development.
View Article and Find Full Text PDFHuman-use medicines are introduced into surface water throughout their entire life cycle, from manufacturing and consumption to improper disposal, resulting in negative effects on aquatic flora and fauna. Sustainability approaches have addressed this issue, proposing frameworks like the One Health approach. A revised definition of the rational use of medicines has also been proposed, taking into account their environmental sustainability.
View Article and Find Full Text PDFThe plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus.
View Article and Find Full Text PDFCalcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by a lack of high-throughput, unbiased, and quantitative methods to identify protein-calcium engagement. To address this, we adapted protein thermostability assays in budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2,884 putative calcium-regulated proteins across human, mouse, and yeast proteomes.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour.
View Article and Find Full Text PDFThe fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known.
View Article and Find Full Text PDFMistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNA variants on fly development, lifespan, and behaviour.
View Article and Find Full Text PDFMistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In , a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.
View Article and Find Full Text PDFThe plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus.
View Article and Find Full Text PDFTo bridge the gap between bench and bedside, there is a need for more faithful models of human cancers that can recapitulate key features of the human tumor microenvironment (TME) and simultaneously facilitate large-scale drug tests. Our recently developed microdissection method optimizes the yield of large numbers of cuboidal microtissues (″cuboids″, ~(400 µm) ) from a tumor biopsy. Here we demonstrate that cuboids from syngeneic mouse tumor models and human tumors retain a complex TME, making them amenable for drug and immunotherapy evaluation.
View Article and Find Full Text PDFProtein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with N and C, respectively. Moreover, E.
View Article and Find Full Text PDFCalcium ions play important roles in nearly every biological process, yet whole-proteome analysis of calcium effectors has been hindered by lack of high-throughput, unbiased, and quantitative methods to identify proteins-calcium engagement. To address this, we adapted protein thermostability assays in the budding yeast, human cells, and mouse mitochondria. Based on calcium-dependent thermostability, we identified 2884 putative calcium-regulated proteins across human, mouse, and yeast proteomes.
View Article and Find Full Text PDFThe fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve.
View Article and Find Full Text PDFThe cellular ability to react to environmental fluctuations depends on signaling networks that are controlled by the dynamic activities of kinases and phosphatases. Here, to gain insight into these stress-responsive phosphorylation networks, we generated a quantitative mass spectrometry-based atlas of early phosphoproteomic responses in Saccharomyces cerevisiae exposed to 101 environmental and chemical perturbations. We report phosphosites on 59% of the yeast proteome, with 18% of the proteome harboring a phosphosite that is regulated within 5 min of stress exposure.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNA and the anticodon plays no role in charging, tRNA variants with anticodon mutations have the potential to mis-incorporate alanine.
View Article and Find Full Text PDFBackground: Pharmaceuticals treat and prevent diseases but can pose a risk to organisms, predominantly in aquatic environments. The use of pharmaceuticals is predicted to increase due to, among other factors, a growing and aging population and climate change. Therefore, it is important to develop mitigation strategies to prevent pharmaceutical residues from entering the environment.
View Article and Find Full Text PDFAging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function.
View Article and Find Full Text PDFPharmaceuticals can reach the environment at all stages of their lifecycle and accumulate in the ecosystem, potentially reaching toxic levels for animals and plants. In recent years, efforts have been made to map and control this hazard. Assessing country-specific environmental risks could drive regulatory actions towards eco-friendlier drug utilization and disposal practices.
View Article and Find Full Text PDFPhosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies.
View Article and Find Full Text PDFAging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function.
View Article and Find Full Text PDF