Background: The glymphatic system has been suggested as an important clearance mechanism for amyloid-β (Aβ) during sleep. Animal and cellular models have suggested this clearance mechanism involves the water-channel protein, Aquaporin-4 (encoded by the AQP4 gene), located primarily in the astrocytic end-feet. We have previously reported on the interaction between genetic variants within AQP4, sleep and cross-sectional cortical amyloid-β (Aβ) burden.
View Article and Find Full Text PDFBackground: Genome-wide association studies (GWAS) have identified numerous genetic variants associated with Alzheimer's disease (AD) risk, but genetic variation in the onset and progression of AD pathology is less understood. Accumulation of amyloid-β (Aβ) in the brain is a key pathological hallmark of AD beginning 10 - 20 years prior to cognitive symptoms. We investigated the genetic basis of variation in age at onset (AAO) of brain Aβ by comparing the performance of polygenic scores (PGSs) based on AD risk and resilience with a Aβ-AAO trait-specific PGS.
View Article and Find Full Text PDFBackground: Cognitive dysfunction is central to clinicopathological models of Alzheimer's disease (AD). While AD prospective studies assess similar cognitive domains, the neuropsychological tests used vary between studies, limiting potential for aggregation. We examined a machine learning (ML) data harmonisation method for neuropsychological test data to develop a harmonised PACC score for the Alzheimer's Dementia Onset and Progression in International Cohorts (ADOPIC) consortium.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is classically viewed as a predominantly amnestic syndrome, with other cognitive and neuropsychiatric symptoms (NPS) being non-integral associations. Emerging Evidence suggests that within typical AD, these symptoms are core features from the onset.
Methods: We employed K-modes clustering on 2483 cognitively impaired (CI) individuals (CDR ≥ 0.
Background: The relationship between subtle cognitive decline and Alzheimer's disease (AD) pathology as measured by biomarkers in settings outside of specialty memory clinics is not well characterized.
Objective: To investigate how subtle longitudinal cognitive decline relates to neuroimaging biomarkers in individuals drawn from a population-based study in an economically depressed, small-town area in southwestern Pennsylvania, USA.
Methods: A subset of participants without dementia (N = 115, age 76.
The presence of multiple pathologies is the largest predictor of dementia. A major gap in the field is the in vivo detection of mixed pathologies and their antecedents. The Alzheimer's Disease Research Centers (ADRCs) are uniquely positioned to address this gap.
View Article and Find Full Text PDFBackground: Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced.
View Article and Find Full Text PDFHigh-performance, resource-efficient methods for plasma amyloid-β (Aβ) quantification in Alzheimer's disease are lacking; existing mass spectrometry-based assays are resource- and time-intensive. We developed a streamlined mass spectrometry method with a single immunoprecipitation step, an optimized buffer system, and ≤75% less antibody requirement. Analytical and clinical performances were compared with an in-house reproduced version of a well-known two-step assay.
View Article and Find Full Text PDFIntroduction: Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs.
Methods: We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau and t-tau) and F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19).
Background: Tau accumulation in Alzheimer's disease is associated with short term clinical progression and faster rates of cognitive decline in individuals with high amyloid-β deposition. Defining an optimal threshold of tau accumulation predictive of cognitive decline remains a challenge.
Objective: We tested the ability of regional tau PET sensitivity and specificity thresholds to predict longitudinal cognitive decline.
The Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core has evolved over time, beginning with positron emission tomography (PET) imaging of a subsample of participants with [F]fluorodeoxyglucose (FDG)-PET, adding tracers for measurement of β-amyloid, followed by tau tracers. This review examines the evolution of the ADNI PET Core, the novel aspects of PET imaging in each stage of ADNI, and gives an accounting of PET images available in the ADNI database. The ADNI PET Core has been and continues to be a rich resource that provides quantitative PET data and preprocessed PET images to the scientific community, allowing interrogation of both basic and clinically relevant questions.
View Article and Find Full Text PDFIntroduction: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis.
Methods: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data.
Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care.
View Article and Find Full Text PDFThe reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT).
View Article and Find Full Text PDFIntroduction: Plasma biomarkers of Alzheimer's disease and related dementias predict global cognitive performance and decline over time; it remains unclear how they associate with changes in different dementia syndromes affecting distinct cognitive domains.
Methods: In a prospective study with repeated assessments of a randomly selected population-based cohort (n = 787, median age 73), we evaluated performance and decline in different cognitive domains over up to 8 years in relation to plasma concentrations of amyloid beta 42/40 (Aβ42/40) ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP).
Results: Cross-sectionally, memory showed the strongest associations with p-tau181, and attention, executive, and visuospatial functions with NfL.
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms.
View Article and Find Full Text PDFThis paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [F]()-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression.
View Article and Find Full Text PDFIntroduction: This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aβ) accumulation.
Methods: Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.
Introduction: The Finnish Geriatric Intervention Study (FINGER) led to the global dementia risk reduction initiative: World-Wide FINGERS (WW-FINGERS). As part of WW-FINGERS, the Australian AU-ARROW study mirrors aspects of FINGER, as well as US-POINTER.
Method: AU-ARROW is a randomized, single-blind, multisite, 2-year clinical trial ( = 600; aged 55-79).
The apolipoprotein-E4 (APOE*4) and apolipoprotein-E2 (APOE*2) alleles are more common in African American versus non-Hispanic white populations, but relationships of both alleles with Alzheimer's disease (AD) pathology among African American individuals are unclear. We measured APOE allele and β-amyloid (Aβ) and tau using blood samples and positron emission tomography (PET) images, respectively. Individual regression models tested associations of each APOE allele with Aβ or tau PET overall, stratified by racialized group, and with a racialized group interaction.
View Article and Find Full Text PDFIntroduction: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT).
View Article and Find Full Text PDF