A numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model.
View Article and Find Full Text PDFSeveral passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO and use of AlN deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs.
View Article and Find Full Text PDFInAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown AlO/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis.
View Article and Find Full Text PDFAtomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes).
View Article and Find Full Text PDFUnlabelled: We report a time-resolved photoluminescence study for GaInNAs and GaNAsSb p-i-n bulk solar cells grown on GaAs(100). In particular, we studied the extent to which the carrier lifetime decreases with the increase of N content. Rapid thermal annealing proved to significantly increase the decay times by a factor of 10 to 12 times, for both GaInNAs and GaNAsSb heterostructures, while for the 1-eV bandgap GaNAsSb structure, grown at the same growth conditions as the GaInNAs, the photoluminescence decay time remained slightly below 100 ps after annealing; the approximately 1.
View Article and Find Full Text PDFNanoscale Res Lett
February 2014
We have measured the characteristics of molecular beam epitaxy grown GaInNAsSb solar cells with different bandgaps using AM1.5G real sun illumination. Based on the solar cell diode characteristics and known parameters for state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge cells, we have calculated the realistic potential efficiency increase for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge multijunction solar cells for different current matching conditions.
View Article and Find Full Text PDFWe study the photoluminescence and impact of post-growth annealing of stacked, strain-free GaAs quantum dots fabricated by refilling of self-organized nanoholes using molecular beam epitaxy. Temperature- and power-dependent photoluminescence studies reveal an excellent optical quality of the quantum-dot stack. After high-temperature post-growth annealing only slight blueshifts and an increase in full width at half-maximum of the photoluminescence peak are observed, indicating very high-temperature stability and crystalline quality of the stacked GaAs quantum-dot structure.
View Article and Find Full Text PDF