We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots. The device utilizes photon-assisted tunneling in a double quantum dot with tunneling events being probed by a third dot. Our device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.
View Article and Find Full Text PDFWe demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers.
View Article and Find Full Text PDFWe explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system.
View Article and Find Full Text PDFIn this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime.
View Article and Find Full Text PDFWe measure the rates and coupling coefficients for local Andreev, nonlocal Andreev, and elastic cotunneling processes. The nonlocal Andreev process, giving rise to Cooper pair splitting, exhibits the same coupling coefficient as the elastic cotunneling whereas the local Andreev process is more than 2 orders of magnitude stronger than the corresponding nonlocal one. Theory estimates describe the findings and explain the large difference in the nonlocal and local coupling arising from competition between electron diffusion in the superconductor and tunnel junction transparency.
View Article and Find Full Text PDFWe study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increases toward the Landauer limit k_{B}Tln2, the work fluctuations decrease in accordance with the work fluctuation-dissipation relation. We compare the results to a protocol without measurement and feedback and show that when no information is used, the work output and fluctuations vanish simultaneously, contrasting the information-to-energy conversion case where increasing amount of work is produced with decreasing fluctuations.
View Article and Find Full Text PDFThe Wiedemann-Franz law states that the charge conductance and the electronic contribution to the heat conductance are proportional. This sets stringent constraints on efficiency bounds for thermoelectric applications, which seek a large charge conduction in response to a small heat flow. We present experiments based on a quantum dot formed inside a semiconducting InAs nanowire transistor, in which the heat conduction can be tuned significantly below the Wiedemann-Franz prediction.
View Article and Find Full Text PDFControlled generation and detection of quantum entanglement between spatially separated particles constitute an essential prerequisite both for testing the foundations of quantum mechanics and for realizing future quantum technologies. Splitting of Cooper pairs from a superconductor provides entangled electrons at separate locations. However, experimentally accessing the individual split Cooper pairs constitutes a major unresolved issue as they mix together with electrons from competing processes.
View Article and Find Full Text PDFConverting incoming photons to electrical current is the key operation principle of optical photodetectors and it enables a host of emerging quantum information technologies. The leading approach for continuous and efficient detection in the optical domain builds on semiconductor photodiodes. However, there is a paucity of efficient and continuous photon detectors in the microwave regime, because photon energies are four to five orders of magnitude lower therein and conventional photodiodes do not have that sensitivity.
View Article and Find Full Text PDFStatistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros-complex singularities of the free energy in systems of finite size-have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
The most succinct manifestation of the second law of thermodynamics is the limitation imposed by the Landauer principle on the amount of heat a Maxwell demon (MD) can convert into free energy per single bit of information obtained in a measurement. We propose and realize an electronic MD based on a single-electron box operated as a Szilard engine, where kBT ln 2 of heat is extracted from the reservoir at temperature T per one bit of created information. The information is encoded in the position of an extra electron in the box.
View Article and Find Full Text PDFWe employ a single-charge counting technique to measure the full counting statistics of Andreev events in which Cooper pairs are either produced from electrons that are reflected as holes at a superconductor-normal-metal interface or annihilated in the reverse process. The full counting statistics consists of quiet periods with no Andreev processes, interrupted by the tunneling of a single electron that triggers an avalanche of Andreev events giving rise to strongly super-Poissonian distributions.
View Article and Find Full Text PDF