Individual limb muscles have characteristic representation and spatial distribution of muscle fiber types (one slow and up to three fast isoforms) appropriate to their unique anatomical location and function. This distribution can be altered by physiological stimuli such as training (i.e.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable.
View Article and Find Full Text PDFSpinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S).
View Article and Find Full Text PDFBackground: Spinal muscular atrophy is an inherited neurodegenerative disease caused by insufficient levels of the survival motor neuron (SMN) protein. Recently approved treatments aimed at increasing SMN protein levels have dramatically improved patient survival and have altered the disease landscape. While restoring SMN levels slows motor neuron loss, many patients continue to have smaller muscles and do not achieve normal motor milestones.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2020
Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival motor neuron (SMN1) gene. An important hallmark of disease progression is the pathology of neuromuscular junctions (NMJs). Affected NMJs in the SMA context exhibit delayed maturation, impaired synaptic transmission, and loss of contact between motor neurons and skeletal muscle.
View Article and Find Full Text PDFAltered microglia function contributes to loss of CNS homeostasis during aging in the brain. Few studies have evaluated age-related alterations in spinal cord microglia. We previously demonstrated that lumbar spinal cord microglial expression of inducible nitric oxide synthase (iNOS) was equivalent between aging, neurologically normal dogs and dogs with canine degenerative myelopathy (Toedebusch et al.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2019
Spinal Muscular Atrophy with Respiratory Distress type 1 (SMARD1) is an autosomal recessive disease that develops early during infancy. The gene responsible for disease development is immunoglobulin helicase μ-binding protein 2 (IGHMBP2). IGHMBP2 is a ubiquitously expressed gene but its mutation results in the loss of alpha-motor neurons and subsequent muscle atrophy initially of distal muscles.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a devastating infantile genetic disorder caused by the loss of survival motor neuron (SMN) protein that leads to premature death due to loss of motor neurons and muscle atrophy. The approval of an antisense oligonucleotide therapy for SMA was an important milestone in SMA research; however, effective next-generation therapeutics will likely require combinatorial SMN-dependent therapeutics and SMN-independent disease modifiers. A recent cross-disease transcriptomic analysis identified Stathmin-1 (STMN1), a tubulin-depolymerizing protein, as a potential disease modifier across different motor neuron diseases, including SMA.
View Article and Find Full Text PDFSpinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2019
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease that causes distal limb muscle atrophy, due to motor neuron degeneration. Similar to other motor neuron diseases, SMARD1 shows differential vulnerability to denervation in various muscle groups, which is recapitulated in the nmd mouse, a model of SMARD1. In multiple neurodegenerative disease models, transcriptomic analysis has identified differentially expressed genes between vulnerable motor neuron populations, but the mechanism leading to susceptibility is largely unknown.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2018
Background: The Philippines has built an extensive decentralised network of Animal Bite Treatment Centers (ABTCs) to help bite victims receive timely rabies post-exposure prophylaxis (PEP) at little cost. This study surveyed patients in the community and at ABTCs of three provinces to assess animal bite/scratch incidence, health-seeking behaviour and PEP-related out-of pocket expenses (OOPE).
Methodology And Principal Findings: During community surveys in 90 barangays (neighbourhoods), 53% of households reported at least one animal bite /scratch injury over the past 3 years, similar across urban and rural barangays.
Background: The Philippine government has an extensive network of 513 Animal Bite Treatment Centers (ABTCs) to supply rabies post exposure prophylaxis (PEP), reaching over 1 million bite victims in 2016. The network was evaluated using a review of existing national and provincial data, key informant interviews and surveys in sample ABTCs to determine the cost-effectiveness of this network in preventing human rabies deaths.
Methodology And Principal Findings: One urban and one rural ABTC in each of three selected provinces were studied in more detail.
The distance between nodes of Ranvier, referred to as internode length, positively correlates with axon diameter, and is optimized during development to ensure maximal neuronal conduction velocity. Following myelin loss, internode length is reestablished through remyelination. However, remyelination results in short internode lengths and reduced conduction rates.
View Article and Find Full Text PDFToxicity within superoxide dismutase-1 (SOD1)-associated familial amyotrophic lateral sclerosis (ALS) is non-cell autonomous with direct contribution from microglia. Microglia exhibit variable expression of neuroprotective and neurotoxic molecules throughout disease progression. The mechanisms regulating microglial phenotype within ALS are not well understood.
View Article and Find Full Text PDFSpinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease causing distal limb muscle atrophy that progresses proximally and is accompanied by diaphragmatic paralysis. Neuromuscular junction (NMJ) alterations have been reported in muscles of SMARD1 model mice, known as nmd mice, with varying degrees of severity, suggesting that different muscles are specifically and selectively resistant or susceptible to denervation. To evaluate the extent of NMJ pathology in a broad range of muscles, a panel of axial and appendicular muscles were isolated and immunostained from nmd mice.
View Article and Find Full Text PDFBackground: Rabies is a fatal disease, claiming the lives of around 59,000 people annually worldwide. It is considered a neglected and underreported disease leading to inadequate support from governments. Apart from dog vaccination and proper animal bite management, an integral part of a successful rabies control program is community education.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is caused by the loss of the survival motor neuron-1 (SMN1) gene, which leads to motor neuron loss, muscle atrophy, respiratory distress, and death. Motor neurons exhibit the most profound loss, but the mechanisms underlying disease pathogenesis are not fully understood. Recent evidence suggests that motor neuron extrinsic influences, such as those arising from astrocytes, contribute to motor neuron malfunction and loss.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (). Importantly, a nearly identical gene is present called ; however, the majority of -derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy.
View Article and Find Full Text PDFIntroduction: Deletion of myostatin in mice (MSTN ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons.
Methods: Using the MSTN mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons.
Genes Brain Behav
February 2017
Charcot-Marie-Tooth (CMT) is the most common inherited peripheral neuropathy, affecting approximately 2.8 million people. The CMT leads to distal neuropathy that is characterized by reduced motor nerve conduction velocity, ataxia, muscle atrophy and sensory loss.
View Article and Find Full Text PDFProg Transplant
September 2016
Lung donation and transplantation is increasing in volume annually, yet there continues to be a shortage of available organs for transplant. Despite this shortage, suitable lungs are occasionally not transplanted due to logistical issues. Issues such as time and distance can be a major barrier in deceased donor organ recovery and transplantation.
View Article and Find Full Text PDF