Publications by authors named "Villafane R"

New generation antibiotics are needed to combat the development of resistance to antimicrobials. One of the most promising new classes of antibiotics is cannabidiol (CBD). It is a non-toxic and low-resistance chemical that can be used to treat bacterial infections.

View Article and Find Full Text PDF

The relationship between human health and gut microbiota is becoming more apparent. It is now widely believed that healthy gut flora plays a vital role in the overall well-being of the individual. There are spatial and temporal variations in the distribution of microbes from the esophagus to the rectum throughout an individual's lifetime.

View Article and Find Full Text PDF

Protein pockets that form a halogen bond (X-bond) with a halogenated ligand molecule simultaneously form other (mainly hydrophobic) interactions with the halogen atom that can be considered as its "X-bond environment" (XBenv). Most studies in the field have focused on the X-bond, with the properties of the XBenv usually overlooked. In this work, we derived a protocol that evaluates the XBenv strength as a measure of the propensity of a protein pocket to host an X-bond.

View Article and Find Full Text PDF

The prevalence of multidrug resistant bacterial diseases is a major global health risk. Multidrug resistant bacterial diseases are prevalent, and the need for novel methods of treatment is essential to the preservation of public health. Annually foodborne pathogens cause 1.

View Article and Find Full Text PDF

() is one of the major food and waterborne bacteria that causes several health outbreaks in the world. Although there are few antibiotics against this bacterium, some of these drugs are challenged with resistance and toxicity. To mitigate this challenge, our group explored the ethnomedicinal/herbalism knowledge about a certain spice used in Northern Ghana in West Africa against bacterial and viral infection.

View Article and Find Full Text PDF

Products derived from L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research.

View Article and Find Full Text PDF

, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism.

View Article and Find Full Text PDF

In order to estimate the anisotropy emission of 241Am-Be and 252Cf neutron sources from the Spanish Neutron Standards Laboratory (LPN/CIEMAT) detailed models of sources capsules and capsule holders were designed with the MCNPX code. Simulations of the sources inside the capsules without the capsule holders were done to validate the MC model by comparison with experimental results provided by other authors. After that, the capsule holders were incorporated to the simulation.

View Article and Find Full Text PDF

Rice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laser-induced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from rice analysis were evaluated for PDO certification of Argentine brown rice.

View Article and Find Full Text PDF

P22 bacteriophage has been studied extensively and has served as a model for many important processes such as in vivo protein folding, protein aggregation and protein-protein interactions. The trimeric tailspike protein (TSP) serves as the receptor-binding protein for the P22 bacteriophage to the bacterial host. The homotrimeric P22 tail consists of three chains of 666aa in which the first 108aa form a trimeric dome-like structure which is called the N-terminal domain (NTD) and is responsible for attachment of the tailspike protein to the rest of the phage particle structure in the phage assembly pathway.

View Article and Find Full Text PDF

The concentrations of 17 non-essential elements (Al, As, Ba, Be, Cd, Ce, Cr, Hg, La, Li, Pb, Sb, Sn, Sr, Th, Ti, and Tl) were determined in brown grain rice samples of two varieties: Fortuna and Largo Fino. The samples were collected from the four main producing regions of Corrientes province (Argentina). Quantitative determinations were performed by inductively coupled plasma mass spectrometry (ICP-MS), using a validated method.

View Article and Find Full Text PDF

Background: The presence of prophages has been an important variable in genetic exchange and divergence in most bacteria. This study reports the determination of the genomic sequence of Salmonella phage epsilon 34, a temperate bacteriophage that was important in the early study of prophages that modify their hosts' cell surface and is of a type (P22-like) that is common in Salmonella genomes.

Results: The sequence shows that epsilon 34 is a mosaically related member of the P22 branch of the lambdoid phages.

View Article and Find Full Text PDF

Recent studies have established that the most abundant life form, that of phages, has had major influence on the biosphere, bacterial evolution, bacterial genome, and lateral gene transmission. Importantly the phages have served and continue to serve as valuable model systems. Such studies have led to a renewed interest and activity in the study of phages and their genomes.

View Article and Find Full Text PDF

Macrophages are recognized cellular compartments involved in HIV infection; however, the extent to which precursor monocytes are infected in vivo and its significance remains poorly understood. Our aim was to analyze the contribution of monocytes to HIV infection in vivo. PCR assays did not detect HIV-1 proviral DNA in monocytes of HAART-suppressed patients.

View Article and Find Full Text PDF

To understand the interaction between lipopolysaccharide (LPS) and proteins in molecular detail, a molecular genetic approach has been employed, using phage as a model system. The phage epsilon(34) is a Salmonella phage whose tailspike protein (TSP) uses the host LPS as its initial host cell receptor. Previous studies indicated that there was a similarity between the well-studied tail protein of Salmonella phage P22 and the epsilon(34).

View Article and Find Full Text PDF

To study the interaction between lipopolysaccharide and protein, a comparative approach was employed using seven Salmonella enterica serovar Typhimurium typing phages as the protein model systems. This interaction has been studied in detail in the Salmonella enterica serovar Typhimurium phage P22 system and involves only the viral tailspike protein. Similarity between these phages and phage P22 was monitored in this Report by assaying restriction endonuclease digestions, capsid size, reactivity to the P22 tailspike protein monoclonal antibody, mAb92, which reacts with the N-terminus of the P22 tail protein and the ability to produce a PCR fragment using primers made to the ends of the P22 tailspike gene.

View Article and Find Full Text PDF

Objectives: The goals of these studies were to characterize the interaction of the P22 phage particle with the Salmonella cell surface and to determine the phage elements involved in this interaction by mutational analysis.

Background: The phage P22 has been characterized extensively. The gene and protein for the phage P22 tailspike, which is the phage adsorption organelle, have been intensively studied.

View Article and Find Full Text PDF

A distinguishing feature of many microorganisms, belonging to the Gram negative group of bacteria, is the presence of the lipopolysaccharide on their cell surface. Salmonella is a prominent member of this group of bacteria. Many Salmonella phages use the LPS as the initial receptor in the infection process and they can distinguish subtle changes in the LPS molecules.

View Article and Find Full Text PDF

This brief report describes the isolation and initial characterization of revertants to the most severe temperature sensitive folding mutant known. The revertants or suppressors may describe amino acid interactions that occur during the folding of the P22 tailspike polypeptide chain. Results indicate that several different types of suppressors may have been obtained.

View Article and Find Full Text PDF

This review describes the use of a simple genetic system that has provided important insight into the process of folding and, of its flipside, that of protein aggregation. These studies make use of the tail protein of the bacterial virus P22 which infects Salmonella typhimurium. This folding system serves as a model for a number protein structural elements and may also provide important insights into disease-related protein folding defects at a time when an increasing number of diseases are being shown to be due to protein folding alterations.

View Article and Find Full Text PDF

The lipopolysaccharide (LPS) of the Salmonella cell surface serves as the receptor for a very large number of bacterial viruses. The tailspike protein from these viruses recognizes the LPS as its initial receptor. It is proposed that the study of the P22 and epsilon 34 tailspike proteins could serve as a model for the study of the interaction of proteins with LPS.

View Article and Find Full Text PDF

Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.

View Article and Find Full Text PDF

A structure/function study has been initiated for the epsilon 34 bacteriophage proteins involved in lysogeny in Salmonella newington. Hydroxylamine and nitrosoguanidine mutagenesis of a wild type epsilon 34 phage was used to generate clear plaque variants. Complementation analysis was used to define four genes involved in the phage lysogenic pathway.

View Article and Find Full Text PDF

Suppressor mutations which alleviate the defects in folding mutants of the P22 gene 9 tailspike protein have recently been isolated (Fane, B. and King, J. (1991) Genetics 127, 263-277).

View Article and Find Full Text PDF

The DNA packaging portal of the phage P22 procapsid is formed of 12 molecules of the 90,000 dalton gene 1 protein. The assembly of this dodecameric complex at a unique capsid vertex requires scaffolding subunits. The mechanism that ensures the location of the 12-fold symmetrical portal at only one of the 12 5-fold vertices of an icosahedral virus capsid presents a unique assembly problem, which, in some viruses, is solved by the portal also acting as initiator of procapsid assembly.

View Article and Find Full Text PDF