Publications by authors named "Vilimas T"

Background: Tumor mutational burden (TMB) measurements aid in identifying patients who are likely to benefit from immunotherapy; however, there is empirical variability across panel assays and factors contributing to this variability have not been comprehensively investigated. Identifying sources of variability can help facilitate comparability across different panel assays, which may aid in broader adoption of panel assays and development of clinical applications.

Materials And Methods: Twenty-nine tumor samples and 10 human-derived cell lines were processed and distributed to 16 laboratories; each used their own bioinformatics pipelines to calculate TMB and compare to whole exome results.

View Article and Find Full Text PDF

Purpose: Whole-exome (WES) and RNA sequencing (RNA-seq) are key components of cancer immunogenomic analyses. To evaluate the consistency of tumor WES and RNA-seq profiling platforms across different centers, the Cancer Immune Monitoring and Analysis Centers (CIMAC) and the Cancer Immunologic Data Commons (CIDC) conducted a systematic harmonization study.

Experimental Design: DNA and RNA were centrally extracted from fresh frozen and formalin-fixed paraffin-embedded non-small cell lung carcinoma tumors and distributed to three centers for WES and RNA-seq profiling.

View Article and Find Full Text PDF

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates β-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of β-catenin cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes.

View Article and Find Full Text PDF

Cancer immunotherapy, particularly a class of antibodies targeting the CTLA4 and PD-1/PD-L1 negative regulators of immune response (collectively called the immune checkpoint), is one of the most promising approaches for cancer treatment and the use of immune checkpoint inhibitors (ICI) has demonstrated remarkable success in several types of cancer. In studies of unselected patient populations, it was shown that melanoma, non small cell lung cancer (NSCLC), renal cell carcinoma and urothelial carcinoma patients treated with CTLA-4, PD-1 or PD-L1 inhibitors had an improved objective response and overall survival relative to chemotherapy or historical trends, and several ICIs have been approved for the treatment of these and other indications.More recently, several groups found that response to ICI therapy strongly correlates with a high burden of single nucleotide variant (SNV) mutations in the tumor genome, termed tumor mutational burden (TMB), usually expressed as the number of nonsynonymous single nucleotide variants per megabase of sequenced genome.

View Article and Find Full Text PDF
Article Synopsis
  • Metarrestin is a new small molecule that targets the perinucleolar compartment, specifically designed for treating metastatic cancer cells, and this study assesses its pharmacokinetic properties and how it affects cancer-related biological markers.
  • The study involved administering different doses of metarrestin to mice with pancreatic tumors, revealing it has a good oral bioavailability and demonstrates significant tissue concentration in tumors, suggesting effective drug delivery.
  • Results indicated that metarrestin achieves high levels in tumor tissues, with a strong correlation between dosage and drug concentration, alongside a favorable influence on certain mRNA expressions related to tumor biology.
View Article and Find Full Text PDF

Metastasis remains a leading cause of cancer mortality due to the lack of specific inhibitors against this complex process. To identify compounds selectively targeting the metastatic state, we used the perinucleolar compartment (PNC), a complex nuclear structure associated with metastatic behaviors of cancer cells, as a phenotypic marker for a high-content screen of over 140,000 structurally diverse compounds. Metarrestin, obtained through optimization of a screening hit, disassembles PNCs in multiple cancer cell lines, inhibits invasion in vitro, suppresses metastatic development in three mouse models of human cancer, and extends survival of mice in a metastatic pancreatic cancer xenograft model with no organ toxicity or discernable adverse effects.

View Article and Find Full Text PDF

Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry-PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a conserved N-terminal tyrosine residue in Spry1 and Spry2.

View Article and Find Full Text PDF

Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation.

View Article and Find Full Text PDF

T cell lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer frequent within pediatric ALL patients. Recent findings suggested that the transmembrane receptor NOTCH1 is the major oncogene for the majority of T-ALL cases. In these cases activating mutations of NOTCH1 are responsible for the transformation of developing T cell progenitors.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-kappaB pathway transcriptionally and via the IkappaB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-kappaB in bone marrow hematopoietic stem cells and progenitors.

View Article and Find Full Text PDF

Loss of E2A transcription factor activity or activation of the intracellular form of Notch1 (ICN) leads to the development of leukemia or lymphoma in humans or mice, respectively. Current models propose that ICN functions by suppressing E2A through a pre-T cell receptor (TCR)-dependent mechanism. Here we show that lymphomas arising in E2A(-/-) mice require the activation of Notch1 for their survival and have accumulated mutations in, or near, the Notch1 PEST domain, resulting in increased stability and signaling.

View Article and Find Full Text PDF

Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas.

View Article and Find Full Text PDF

Caenorhabditis elegans pharyngeal muscle development involves ceh-22, an NK-2 family homeobox gene related to genes controlling heart development in other species. ceh-22 is the earliest known gene expressed in the pharyngeal muscles and is likely regulated directly by factors specifying pharyngeal muscle fate. We have previously implicated the ceh-22 distal enhancer in initiating ceh-22 expression.

View Article and Find Full Text PDF