Progress in layered van der Waals materials has resulted in the discovery of ferromagnetic and ferroelectric materials down to the monolayer limit. Recently, evidence of the first purely 2D multiferroic material was reported in monolayer NiI. However, probing multiferroicity with scattering-based and optical bulk techniques is challenging on 2D materials, and experiments on the atomic scale are needed to fully characterize the multiferroic order at the monolayer limit.
View Article and Find Full Text PDFUnconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive.
View Article and Find Full Text PDF2D ferroelectric materials provide a promising platform for the electrical control of quantum states. In particular, due to their 2D nature, they are suitable for influencing the quantum states of deposited molecules via the proximity effect. Here, electrically controllable molecular states in phthalocyanine molecules adsorbed on monolayer ferroelectric material SnTe are reported.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDC) are a rich family of two-dimensional materials displaying a multitude of different quantum ground states. In particular, d TMDCs are paradigmatic materials hosting a variety of symmetry broken states, including charge density waves, superconductivity, and magnetism. Among this family, NbSe is one of the best-studied superconducting materials down to the monolayer limit.
View Article and Find Full Text PDFThe search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré.
View Article and Find Full Text PDFHeavy-fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behaviour ranging from quantum criticality and non-Fermi liquid behaviour to unconventional topological superconductivity. The heavy-fermion phenomenon arises from the exchange interaction between localized magnetic moments and conduction electrons leading to Kondo lattice physics, and represents one of the long-standing open problems in quantum materials.
View Article and Find Full Text PDFThe ability to imprint a given material property to another through a proximity effect in layered 2D materials has opened the way to the creation of designer materials. Here, molecular-beam epitaxy is used for direct synthesis of a superconductor-ferromagnet heterostructure by combining superconducting niobium diselenide (NbSe ) with the monolayer ferromagnetic chromium tribromide (CrBr ). Using different characterization techniques and density-functional theory calculations, it is confirmed that the CrBr monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation.
View Article and Find Full Text PDFExotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components.
View Article and Find Full Text PDFIn this paper, the potential existence of two-gap superconductivity in MoGa is addressed in detail by means of thermodynamic and spectroscopic measurements. A combination of highly sensitive bulk and surface probes, specifically ac-calorimetry and scanning tunneling spectroscopy (STS), are utilized on the same piece of crystal and reveal the presence of only one intrinsic gap in the system featuring strong electron-phonon coupling. Minute traces of additional superconducting phases detected by STS and also in the heat capacity measured in high magnetic fields on a high-quality and seemingly single-phase crystal might mimic the multigap superconductivity of MoGa suggested recently in several studies.
View Article and Find Full Text PDF